Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(1): 370-384, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37994783

RESUMEN

The phospholipase D (PLD) family is comprised of enzymes bearing phospholipase activity towards lipids or endo- and exonuclease activity towards nucleic acids. PLD3 is synthesized as a type II transmembrane protein and proteolytically cleaved in lysosomes, yielding a soluble active form. The deficiency of PLD3 leads to the slowed degradation of nucleic acids in lysosomes and chronic activation of nucleic acid-specific intracellular toll-like receptors. While the mechanism of PLD phospholipase activity has been extensively characterized, not much is known about how PLDs bind and hydrolyze nucleic acids. Here, we determined the high-resolution crystal structure of the luminal N-glycosylated domain of human PLD3 in its apo- and single-stranded DNA-bound forms. PLD3 has a typical phospholipase fold and forms homodimers with two independent catalytic centers via a newly identified dimerization interface. The structure of PLD3 in complex with an ssDNA-derived thymidine product in the catalytic center provides insights into the substrate binding mode of nucleic acids in the PLD family. Our structural data suggest a mechanism for substrate binding and nuclease activity in the PLD family and provide the structural basis to design immunomodulatory drugs targeting PLD3.


Asunto(s)
Exodesoxirribonucleasas , Fosfolipasa D , Humanos , Lisosomas/metabolismo , Fosfolipasa D/química , Fosfolipasas , Exodesoxirribonucleasas/química
2.
Proc Natl Acad Sci U S A ; 120(4): e2208941120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656859

RESUMEN

p97 is an essential AAA+ ATPase that extracts and unfolds substrate proteins from membranes and protein complexes. Through its mode of action, p97 contributes to various cellular processes, such as membrane fusion, ER-associated protein degradation, DNA repair, and many others. Diverse p97 functions and protein interactions are regulated by a large number of adaptor proteins. Alveolar soft part sarcoma locus (ASPL) is a unique adaptor protein that regulates p97 by disassembling functional p97 hexamers to smaller entities. An alternative mechanism to regulate the activity and interactions of p97 is by posttranslational modifications (PTMs). Although more than 140 PTMs have been identified in p97, only a handful of those have been described in detail. Here we present structural and biochemical data to explain how the p97-remodeling adaptor protein ASPL enables the metastasis promoting methyltransferase METTL21D to bind and trimethylate p97 at a single lysine side chain, which is deeply buried inside functional p97 hexamers. The crystal structure of a heterotrimeric p97:ASPL:METTL21D complex in the presence of cofactors ATP and S-adenosyl homocysteine reveals how structural remodeling by ASPL exposes the crucial lysine residue of p97 to facilitate its trimethylation by METTL21D. The structure also uncovers a role of the second region of homology (SRH) present in the first ATPase domain of p97 in binding of a modifying enzyme to the AAA+ ATPase. Investigation of this interaction in the human, fish, and plant reveals fine details on the mechanism and significance of p97 trimethylation by METTL21D across different organisms.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas , Metiltransferasas , Animales , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina Trifosfatasas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Lisina/metabolismo , Metilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Proteína que Contiene Valosina/metabolismo , Metiltransferasas/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(17): e2217070120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068239

RESUMEN

Studying mechanisms of bacterial biofilm generation is of vital importance to understanding bacterial cell-cell communication, multicellular cohabitation principles, and the higher resilience of microorganisms in a biofilm against antibiotics. Biofilms of the nonpathogenic, gram-positive soil bacterium Bacillus subtilis serve as a model system with biotechnological potential toward plant protection. Its major extracellular matrix protein components are TasA and TapA. The nature of TasA filaments has been of debate, and several forms, amyloidic and non-Thioflavin T-stainable have been observed. Here, we present the three-dimensional structure of TapA and uncover the mechanism of TapA-supported growth of nonamyloidic TasA filaments. By analytical ultracentrifugation and NMR, we demonstrate TapA-dependent acceleration of filament formation from solutions of folded TasA. Solid-state NMR revealed intercalation of the N-terminal TasA peptide segment into subsequent protomers to form a filament composed of ß-sandwich subunits. The secondary structure around the intercalated N-terminal strand ß0 is conserved between filamentous TasA and the Fim and Pap proteins, which form bacterial type I pili, demonstrating such construction principles in a gram-positive organism. Analogous to the chaperones of the chaperone-usher pathway, the role of TapA is in donating its N terminus to serve for TasA folding into an Ig domain-similar filament structure by donor-strand complementation. According to NMR and since the V-set Ig fold of TapA is already complete, its participation within a filament beyond initiation is unlikely. Intriguingly, the most conserved residues in TasA-like proteins (camelysines) of Bacillaceae are located within the protomer interface.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Proteínas Bacterianas/metabolismo , Bacillus subtilis/metabolismo , Espectroscopía de Resonancia Magnética , Estructura Secundaria de Proteína , Chaperonas Moleculares/metabolismo , Biopelículas
4.
BMC Genomics ; 24(1): 736, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049725

RESUMEN

BACKGROUND: Transcription factors regulate gene expression by binding to transcription factor binding sites (TFBSs). Most models for predicting TFBSs are based on position weight matrices (PWMs), which require a specific motif to be present in the DNA sequence and do not consider interdependencies of nucleotides. Novel approaches such as Transcription Factor Flexible Models or recurrent neural networks consequently provide higher accuracies. However, it is unclear whether such approaches can uncover novel non-canonical, hitherto unexpected TFBSs relevant to human transcriptional regulation. RESULTS: In this study, we trained a convolutional recurrent neural network with HT-SELEX data for GRHL1 binding and applied it to a set of GRHL1 binding sites obtained from ChIP-Seq experiments from human cells. We identified 46 non-canonical GRHL1 binding sites, which were not found by a conventional PWM approach. Unexpectedly, some of the newly predicted binding sequences lacked the CNNG core motif, so far considered obligatory for GRHL1 binding. Using isothermal titration calorimetry, we experimentally confirmed binding between the GRHL1-DNA binding domain and predicted GRHL1 binding sites, including a non-canonical GRHL1 binding site. Mutagenesis of individual nucleotides revealed a correlation between predicted binding strength and experimentally validated binding affinity across representative sequences. This correlation was neither observed with a PWM-based nor another deep learning approach. CONCLUSIONS: Our results show that convolutional recurrent neural networks may uncover unanticipated binding sites and facilitate quantitative transcription factor binding predictions.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Sitios de Unión , Unión Proteica , Redes Neurales de la Computación , Nucleótidos/metabolismo , Proteínas Represoras/genética
5.
Nucleic Acids Res ; 49(9): 5369-5381, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33950203

RESUMEN

The CCCH-type zinc finger (ZnF) containing ZC3H12 ribonucleases are crucial in post-transcriptional immune homoeostasis with ZC3H12A being the only structurally studied member of the family. In this study, we present a structural-biochemical characterization of ZC3H12C, which is linked with chronic immune disorders like psoriasis. We established that the RNA substrate is cooperatively recognized by the PIN and ZnF domains of ZC3H12C and analyzed the crystal structure of ZC3H12C bound to a single-stranded RNA substrate. The RNA engages in hydrogen-bonded contacts and stacking interactions with the PIN and ZnF domains simultaneously. The ZC3H12 ZnF shows unprecedented structural features not previously observed in any member of the CCCH-ZnF family and utilizes stacking interactions via a unique combination of spatially conserved aromatic residues to align the target transcript in a bent conformation onto the ZnF scaffold. Further comparative structural analysis of ZC3H12 CCCH-ZnF suggests that a trinucleotide sequence is recognized by ZC3H12 ZnF in target RNA. Our work not only describes the initial structure-biochemical study on ZC3H12C, but also provides the first molecular insight into RNA recognition by a ZC3H12 family member. Finally, our work points to an evolutionary code for RNA recognition adopted by CCCH-type ZnF proteins.


Asunto(s)
ARN/química , Ribonucleasas/química , Regiones no Traducidas 3' , Animales , Cristalografía por Rayos X , Células HEK293 , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Magnesio , Ratones , Modelos Moleculares , Unión Proteica , Dominios Proteicos , ARN/metabolismo , Ribonucleasas/metabolismo , Dedos de Zinc
6.
Proc Natl Acad Sci U S A ; 117(47): 29684-29690, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33184177

RESUMEN

Battling metastasis through inhibition of cell motility is considered a promising approach to support cancer therapies. In this context, Ena/VASP-depending signaling pathways, in particular interactions with their EVH1 domains, are promising targets for pharmaceutical intervention. However, protein-protein interactions involving proline-rich segments are notoriously difficult to address by small molecules. Hence, structure-based design efforts in combination with the chemical synthesis of additional molecular entities are required. Building on a previously developed nonpeptidic micromolar inhibitor, we determined 22 crystal structures of ENAH EVH1 in complex with inhibitors and rationally extended our library of conformationally defined proline-derived modules (ProMs) to succeed in developing a nanomolar inhibitor ([Formula: see text] Da). In contrast to the previous inhibitor, the optimized compounds reduced extravasation of invasive breast cancer cells in a zebrafish model. This study represents an example of successful, structure-guided development of low molecular weight inhibitors specifically and selectively addressing a proline-rich sequence-recognizing domain that is characterized by a shallow epitope lacking defined binding pockets. The evolved high-affinity inhibitor may now serve as a tool in validating the basic therapeutic concept, i.e., the suppression of cancer metastasis by inhibiting a crucial protein-protein interaction involved in actin filament processing and cell migration.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Moléculas de Adhesión Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Femenino , Humanos , Células Jurkat , Prolina/metabolismo , Unión Proteica/efectos de los fármacos , Pez Cebra
7.
J Biol Chem ; 296: 100286, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33450228

RESUMEN

Pathogenic microorganisms often reside in glycan-based biofilms. Concentration and chain length distribution of these mostly anionic exopolysaccharides (EPS) determine the overall biophysical properties of a biofilm and result in a highly viscous environment. Bacterial communities regulate this biofilm state via intracellular small-molecule signaling to initiate EPS synthesis. Reorganization or degradation of this glycan matrix, however, requires the action of extracellular glycosidases. So far, these were mainly described for bacteriophages that must degrade biofilms for gaining access to host bacteria. The plant pathogen Pantoea stewartii (P. stewartii) encodes the protein WceF within its EPS synthesis cluster. WceF has homologs in various biofilm forming plant pathogens of the Erwinia family. In this work, we show that WceF is a glycosidase active on stewartan, the main P. stewartii EPS biofilm component. WceF has remarkable structural similarity with bacteriophage tailspike proteins (TSPs). Crystal structure analysis showed a native trimer of right-handed parallel ß-helices. Despite its similar fold, WceF lacks the high stability found in bacteriophage TSPs. WceF is a stewartan hydrolase and produces oligosaccharides, corresponding to single stewartan repeat units. However, compared with a stewartan-specific glycan hydrolase of bacteriophage origin, WceF showed lectin-like autoagglutination with stewartan, resulting in notably slower EPS cleavage velocities. This emphasizes that the bacterial enzyme WceF has a role in P. stewartii biofilm glycan matrix reorganization clearly different from that of a bacteriophage exopolysaccharide depolymerase.


Asunto(s)
Proteínas Bacterianas/química , Biopelículas/crecimiento & desarrollo , Glicósido Hidrolasas/química , Pantoea/enzimología , Polisacáridos Bacterianos/química , Proteínas de la Cola de los Virus/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/química , Bacteriófagos/enzimología , Sitios de Unión , Secuencia de Carbohidratos , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Modelos Moleculares , Oligosacáridos/química , Oligosacáridos/metabolismo , Pantoea/genética , Plantas/microbiología , Polisacáridos Bacterianos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína , Proteínas de la Cola de los Virus/genética , Proteínas de la Cola de los Virus/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(13): 3237-3242, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29531041

RESUMEN

Microorganisms form surface-attached communities, termed biofilms, which can serve as protection against host immune reactions or antibiotics. Bacillus subtilis biofilms contain TasA as major proteinaceous component in addition to exopolysaccharides. In stark contrast to the initially unfolded biofilm proteins of other bacteria, TasA is a soluble, stably folded monomer, whose structure we have determined by X-ray crystallography. Subsequently, we characterized in vitro different oligomeric forms of TasA by NMR, EM, X-ray diffraction, and analytical ultracentrifugation (AUC) experiments. However, by magic-angle spinning (MAS) NMR on live biofilms, a swift structural change toward only one of these forms, consisting of homogeneous and protease-resistant, ß-sheet-rich fibrils, was observed in vivo. Thereby, we characterize a structural change from a globular state to a fibrillar form in a functional prokaryotic system on the molecular level.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/química , Biopelículas/crecimiento & desarrollo , Bacillus subtilis/química , Proteínas Bacterianas/metabolismo , Calorimetría , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Metaloendopeptidasas/química , Microscopía Electrónica , Modelos Moleculares , Peso Molecular , Conformación Proteica , Homología Estructural de Proteína , Ultracentrifugación
9.
J Struct Biol ; 211(2): 107536, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32473201

RESUMEN

Complete genome sequencing of the kinetoplastid protozoans Trypanosoma cruzi, Trypanosoma brucei and Leishmania major (Tritryp), published in 2005, opened up new perspectives for drug development targeting Chagas disease, African sleeping sickness and Leishmaniasis, neglected diseases affecting millions of most economically disadvantaged people. Still, half of the Tritryp genes code for proteins of unknown function. Moreover, almost 50% of conserved eukaryotic protein domains are missing in the Tritryp genomes. This suggests that functional and structural characterization of proteins of unknown function could reveal novel protein folds used by the trypanosomes for common cellular processes. Furthermore, proteins without homologous counterparts in humans may provide potential targets for therapeutic intervention. Here we describe the crystal structure of the T. cruzi protein Q4D6Q6, a conserved and kinetoplastid-specific protein essential for cell viability. Q4D6Q6 is a representative of a family of 20 orthologs, all annotated as proteins of unknown function. Q4D6Q6 monomers adopt a ßßαßßαßß topology and form a propeller-like tetramer. Oligomerization was verified in solution using NMR, SAXS, analytical ultra-centrifugation and gel filtration chromatography. A rigorous search for similar structures using the DALI server revealed similarities with propeller-like structures of several different functions. Although a Q4D6Q6 function could not be inferred from such structural comparisons, the presence of an oxidized cysteine at position 69, part of a cluster with phosphorylated serines and hydrophobic residues, identifies a highly reactive site and suggests a role of this cysteine as a nucleophile in a post-translational modification reaction.


Asunto(s)
Proteínas Protozoarias/ultraestructura , Trypanosoma cruzi/ultraestructura , Animales , Humanos , Leishmania major/ultraestructura , Modelos Moleculares , Proteínas Protozoarias/genética , Dispersión del Ángulo Pequeño , Trypanosoma brucei brucei/ultraestructura , Trypanosoma cruzi/genética , Difracción de Rayos X
10.
J Biol Chem ; 294(31): 11751-11761, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31189652

RESUMEN

Myoviruses, bacteriophages with T4-like architecture, must contract their tails prior to DNA release. However, quantitative kinetic data on myovirus particle opening are lacking, although they are promising tools in bacteriophage-based antimicrobial strategies directed against Gram-negative hosts. For the first time, we show time-resolved DNA ejection from a bacteriophage with a contractile tail, the multi-O-antigen-specific Salmonella myovirus Det7. DNA release from Det7 was triggered by lipopolysaccharide (LPS) O-antigen receptors and notably slower than in noncontractile-tailed siphoviruses. Det7 showed two individual kinetic steps for tail contraction and particle opening. Our in vitro studies showed that highly specialized tailspike proteins (TSPs) are necessary to attach the particle to LPS. A P22-like TSP confers specificity for the Salmonella Typhimurium O-antigen. Moreover, crystal structure analysis at 1.63 Šresolution confirmed that Det7 recognized the Salmonella Anatum O-antigen via an ϵ15-like TSP, DettilonTSP. DNA ejection triggered by LPS from either host showed similar velocities, so particle opening is thus a process independent of O-antigen composition and the recognizing TSP. In Det7, at permissive temperatures TSPs mediate O-antigen cleavage and couple cell surface binding with DNA ejection, but no irreversible adsorption occurred at low temperatures. This finding was in contrast to short-tailed Salmonella podoviruses, illustrating that tailed phages use common particle-opening mechanisms but have specialized into different infection niches.


Asunto(s)
ADN Viral/metabolismo , Fagos de Salmonella/metabolismo , Salmonella typhimurium/virología , Cristalografía por Rayos X , Glicósido Hidrolasas , Lipopolisacáridos/farmacología , Antígenos O/metabolismo , Estructura Terciaria de Proteína , Fagos de Salmonella/efectos de los fármacos , Salmonella typhimurium/metabolismo , Proteínas de la Cola de los Virus/química , Proteínas de la Cola de los Virus/metabolismo
11.
Biochem Biophys Res Commun ; 523(2): 287-292, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31862141

RESUMEN

Cyclic-di-GMP (c-di-GMP) synthesized by diguanylate cyclases has been an important and ubiquitous secondary messenger in almost all bacterial systems. In Vibrio cholerae, c-di-GMP plays an intricate role in the production of the exopolysaccharide matrix, and thereby, in biofilm formation. The formation of the surface biofilm enables the bacteria to survive in aquatic bodies, when not infecting a human host. Diguanylate cyclases are the class of enzymes which synthesize c-di-GMP from two molecules of GTP and are endowed with a GGDEF or, a GGEEF signature domain. The VC0395_0300 protein from V. cholerae, has been established as a diguanylate cyclase with a necessary role in biofilm formation. Here we present the structure of an N-terminally truncated form of VC0395_0300, which retains the active GGEEF domain for diguanylate cyclase activity but lacks 160 residues from the poorly organized N-terminal domain. X-ray diffraction data was collected from a crystal of VC0395_0300(161-321) to a resolution of 1.9 Å. The structure displays remarkable topological similarity with diguanylate cyclases from other bacterial systems, but lacks the binding site for c-di-GMP present in its homologues. Finally, we demonstrate the ability of the truncated diguanylate cyclase VC0395_0300(161-321) to produce c-di-GMP, and its role in biofilm formation for the bacteria.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Liasas de Fósforo-Oxígeno/química , Vibrio cholerae/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Dominio Catalítico , Cristalografía por Rayos X , GMP Cíclico/análogos & derivados , GMP Cíclico/biosíntesis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Dominios Proteicos , Sistemas de Mensajero Secundario , Solubilidad , Electricidad Estática , Vibrio cholerae/genética , Vibrio cholerae/fisiología
12.
RNA ; 24(2): 209-218, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29122970

RESUMEN

Wobble base pairs are critical in various physiological functions and have been linked to local structural perturbations in double-helical structures of nucleic acids. We report a 1.38-Å resolution crystal structure of an antiparallel octadecamer RNA double helix in overall A conformation, which includes a unique, central stretch of six consecutive wobble base pairs (W helix) with two G·U and four rare C·A+ wobble pairs. Four adenines within the W helix are N1-protonated and wobble-base-paired with the opposing cytosine through two regular hydrogen bonds. Combined with the two G·U pairs, the C·A+ base pairs facilitate formation of a half turn of W-helical RNA flanked by six regular Watson-Crick base pairs in standard A conformation on either side. RNA melting experiments monitored by differential scanning calorimetry, UV and circular dichroism spectroscopy demonstrate that the RNA octadecamer undergoes a pH-induced structural transition which is consistent with the presence of a duplex with C·A+ base pairs at acidic pH. Our crystal structure provides a first glimpse of an RNA double helix based entirely on wobble base pairs with possible applications in RNA or DNA nanotechnology and pH biosensors.


Asunto(s)
ARN Bicatenario/química , Adenina/química , Emparejamiento Base , Dicroismo Circular , Concentración de Iones de Hidrógeno , Modelos Moleculares , Desnaturalización de Ácido Nucleico , Protones , Termodinámica
13.
Nucleic Acids Res ; 46(4): 2082-2095, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29309642

RESUMEN

Grainyhead (Grh)/CP2 transcription factors are highly conserved in multicellular organisms as key regulators of epithelial differentiation, organ development and skin barrier formation. In addition, they have been implicated as being tumor suppressors in a variety of human cancers. Despite their physiological importance, little is known about their structure and DNA binding mode. Here, we report the first structural study of mammalian Grh/CP2 factors. Crystal structures of the DNA-binding domains of grainyhead-like (Grhl) 1 and Grhl2 reveal a closely similar conformation with immunoglobulin-like core. Both share a common fold with the tumor suppressor p53, but differ in important structural features. The Grhl1 DNA-binding domain binds duplex DNA containing the consensus recognition element in a dimeric arrangement, supporting parsimonious target-sequence selection through two conserved arginine residues. We elucidate the molecular basis of a cancer-related mutation in Grhl1 involving one of these arginines, which completely abrogates DNA binding in biochemical assays and transcriptional activation of a reporter gene in a human cell line. Thus, our studies establish the structural basis of DNA target-site recognition by Grh transcription factors and reveal how tumor-associated mutations inactivate Grhl proteins. They may serve as points of departure for the structure-based development of Grh/CP2 inhibitors for therapeutic applications.


Asunto(s)
ADN/química , Proteínas Represoras/química , Activación Transcripcional , Animales , Arginina/química , Línea Celular , Claudina-4/genética , ADN/metabolismo , Proteínas de Unión al ADN/química , Humanos , Ratones , Modelos Moleculares , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/química
14.
Int J Mol Sci ; 20(23)2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31795346

RESUMEN

Tight junctions are complex supramolecular entities composed of integral membrane proteins, membrane-associated and soluble cytoplasmic proteins engaging in an intricate and dynamic system of protein-protein interactions. Three-dimensional structures of several tight-junction proteins or their isolated domains have been determined by X-ray crystallography, nuclear magnetic resonance spectroscopy, and cryo-electron microscopy. These structures provide direct insight into molecular interactions that contribute to the formation, integrity, or function of tight junctions. In addition, the known experimental structures have allowed the modeling of ligand-binding events involving tight-junction proteins. Here, we review the published structures of tight-junction proteins. We show that these proteins are composed of a limited set of structural motifs and highlight common types of interactions between tight-junction proteins and their ligands involving these motifs.


Asunto(s)
Proteínas de Uniones Estrechas/química , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Dominios PDZ , Conformación Proteica , Multimerización de Proteína , Alineación de Secuencia , Proteínas de Uniones Estrechas/metabolismo , Proteínas de Uniones Estrechas/ultraestructura
15.
J Am Chem Soc ; 140(33): 10447-10455, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30044908

RESUMEN

The principles of protein-glycan binding are still not well understood on a molecular level. Attempts to link affinity and specificity of glycan recognition to structure suffer from the general lack of model systems for experimental studies and the difficulty to describe the influence of solvent. We have experimentally and computationally addressed energetic contributions of solvent in protein-glycan complex formation in the tailspike protein (TSP) of E. coli bacteriophage HK620. HK620TSP is a 230 kDa native trimer of right-handed, parallel beta-helices that provide extended, rigid binding sites for bacterial cell surface O-antigen polysaccharides. A set of high-affinity mutants bound hexa- or pentasaccharide O-antigen fragments with very similar affinities even though hexasaccharides introduce an additional glucose branch into an occluded protein surface cavity. Remarkably different thermodynamic binding signatures were found for different mutants; however, crystal structure analyses indicated that no major oligosaccharide or protein topology changes had occurred upon complex formation. This pointed to a solvent effect. Molecular dynamics simulations using a mobility-based approach revealed an extended network of solvent positions distributed over the entire oligosaccharide binding site. However, free energy calculations showed that a small water network inside the glucose-binding cavity had the most notable influence on the thermodynamic signature. The energy needed to displace water from the glucose binding pocket depended on the amino acid at the entrance, in agreement with the different amounts of enthalpy-entropy compensation found for introducing glucose into the pocket in the different mutants. Studies with small molecule drugs have shown before that a few active water molecules can control protein complex formation. HK620TSP oligosaccharide binding shows that similar fundamental principles also apply for glycans, where a small number of water molecules can dominate the thermodynamic signature in an extended binding site.


Asunto(s)
Oligosacáridos/química , Proteínas/química , Solventes/química , Termodinámica , Sitios de Unión , Colifagos/química , Cristalografía por Rayos X , Glicósido Hidrolasas , Simulación de Dinámica Molecular , Conformación Proteica , Proteínas de la Cola de los Virus/química
16.
Biochim Biophys Acta ; 1859(7): 841-7, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27131901

RESUMEN

The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , ADN/metabolismo , Factores de Transcripción E2F/metabolismo , Dominios y Motivos de Interacción de Proteínas , Secuencia de Aminoácidos , Animales , Proteínas Potenciadoras de Unión a CCAAT/química , Proteínas Potenciadoras de Unión a CCAAT/genética , Células Cultivadas , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/genética , Estructura Secundaria de Proteína/genética , Homología de Secuencia de Aminoácido
17.
Phys Chem Chem Phys ; 19(31): 20723-20734, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28740983

RESUMEN

Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling is used to investigate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals. Within a single crystal, the oriented ensemble of spin bearing moieties results in a strong angle dependence of the EPR spectra. A quantitative description of the EPR spectra requires the determination of the unit cell orientation with respect to the sample tube and the orientation of the spin bearing moieties within the crystal lattice. Angle dependent EPR spectra were analyzed by line shape simulations using the stochastic Liouville equation approach developed by Freed and co-workers and an effective Hamiltonian approach. The gain in spectral information obtained from the EPR spectra of single crystalline samples taken at different frequencies, namely the X-band and Q-band, allows us to discriminate between motional models describing the spectra of isotropic solutions similarly well. In addition, it is shown that the angle dependent single crystal spectra allow us to identify two spin label rotamers with very similar side chain dynamics. These results demonstrate the utility of single crystal EPR spectroscopy in combination with spectral line shape simulation techniques to extract valuable dynamic information not readily available from the analysis of isotropic systems. In addition, it will be shown that the loss of electron density in high resolution diffraction experiments at room temperature does not allow us to conclude that there is significant structural disorder in the system.


Asunto(s)
Bacteriófago T4/enzimología , Muramidasa/química , Proteínas Virales/química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Enlace de Hidrógeno , Estructura Terciaria de Proteína , Marcadores de Spin , Temperatura
18.
Mol Cell ; 36(5): 782-93, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20005842

RESUMEN

Protein quality control in the endoplasmic reticulum is of central importance for cellular homeostasis in eukaryotes. Crucial for this process is the HRD-ubiquitin ligase (HMG-CoA reductase degradation), which singles out terminally misfolded proteins and routes them for degradation to cytoplasmic 26S-proteasomes. Certain functions of this enzyme complex are allocated to defined subunits. However, it remains unclear how these components act in a concerted manner. Here, we show that Usa1 functions as a major scaffold protein of the HRD-ligase. For the turnover of soluble substrates, Der1 binding to the C terminus of Usa1 is required. The N terminus of Usa1 associates with Hrd1 and thus bridges Der1 to Hrd1. Strikingly, the Usa1 N terminus also induces oligomerization of the HRD complex, which is an exclusive prerequisite for the degradation of membrane proteins. Our data demonstrate that scaffold proteins are required to adapt ubiquitin ligase activities toward different classes of substrates.


Asunto(s)
Proteínas Fúngicas/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Levaduras/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mapeo de Interacción de Proteínas
19.
Biochem J ; 473(13): 1881-94, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27102985

RESUMEN

A-kinase anchoring proteins (AKAPs) interact with the dimerization/docking (D/D) domains of regulatory subunits of the ubiquitous protein kinase A (PKA). AKAPs tether PKA to defined cellular compartments establishing distinct pools to increase the specificity of PKA signalling. Here, we elucidated the structure of an extended PKA-binding domain of AKAP18ß bound to the D/D domain of the regulatory RIIα subunits of PKA. We identified three hydrophilic anchor points in AKAP18ß outside the core PKA-binding domain, which mediate contacts with the D/D domain. Such anchor points are conserved within AKAPs that bind regulatory RII subunits of PKA. We derived a different set of anchor points in AKAPs binding regulatory RI subunits of PKA. In vitro and cell-based experiments confirm the relevance of these sites for the interaction of RII subunits with AKAP18 and of RI subunits with the RI-specific smAKAP. Thus we report a novel mechanism governing interactions of AKAPs with PKA. The sequence specificity of each AKAP around the anchor points and the requirement of these points for the tight binding of PKA allow the development of selective inhibitors to unequivocally ascribe cellular functions to the AKAP18-PKA and other AKAP-PKA interactions.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Calorimetría , Células HEK293 , Humanos , Inmunoprecipitación , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transducción de Señal , Resonancia por Plasmón de Superficie
20.
J Am Chem Soc ; 138(39): 12868-12875, 2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27673570

RESUMEN

Proteins are dynamic molecules that can transiently adopt different conformational states. As the function of the system often depends critically on its conformational state a rigorous understanding of the correlation between structure, energetics and dynamics of the different accessible states is crucial. The biophysical characterization of such processes is, however, challenging as the excited states are often only marginally populated. We show that a combination of X-ray crystallography performed at 100 K as well as at room temperature and EPR spectroscopy on a spin-labeled single crystal allows to correlate the structures of the ground state and a thermally excited state with their thermodynamics using the variant 118R1 of T4 lysozyme as an example. In addition, it is shown that the surrounding solvent can significantly alter the energetic as well as the entropic contribution to the Gibbs free energy without major impact on the structure of both states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA