Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Agric Food Chem ; 65(20): 4103-4110, 2017 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28457134

RESUMEN

Benzoxazinoids are highly studied compounds due to their biological activity and presence in several cereals. They include compound classes such as hydroxamic acids and lactams and usually occur as inactive glucosides in unstressed plants. Injury to the plant causes enzymatic hydrolysis of the inactive glucosides to the biologically active hydroxamic acid and lactam aglucones. The hydroxamic acids further undergo spontaneous hydrolysis to benzoxazolinones in aqueous solution. Extraction methods that do not cause immediate inactivation of enzymes result in accumulation of aglucones in samples. Using HPLC-MS to profile benzoxazinoids in maize seedlings subjected to several sample preparation techniques, we have found that hydroxamic acid aglucones and benzoxazolinones are present in uninjured maize seedlings, but that the benxozazinoid profile varies depending on sample treatment, potentially underrepresenting the glucoside content and overrepresenting the aglucone and benzoxazolinone content.


Asunto(s)
Benzoxazinas/química , Zea mays/química , Cromatografía Líquida de Alta Presión , Almacenamiento de Alimentos , Liofilización , Congelación , Espectrometría de Masas , Estructura Molecular , Plantones/química
2.
Chemosphere ; 65(11): 2223-32, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16815528

RESUMEN

Filling and cleaning of pesticide sprayers presents a potential risk of pollution of soil and water. Three different solutions for handling sprayers have been suggested: Filling and cleaning in the field, filling and cleaning on hard surfaces with collection of the waste water, and filling and cleaning on a biobed, which is an excavation lined with clay and filled with a mixture of chopped straw, sphagnum and soil with turf on top, and with increased sorption capacity and microbial activity for degradation of the pesticides. In the present study the degradation and leaching of 21 pesticides (5 g of each) was followed in an established full-scale model biobed. Percolate was collected and analysed for pesticide residues, and the biobed material was sampled at three different depths and analysed by liquid chromatography double mass spectrometry (LC-MSMS). During the total study period of 563 days, no traces of 10 out of 21 applied pesticides were detected in the percolate (detection limits between 0.02 and 0.9 microg l(-1)) and three pesticides were only detected once and at concentrations below 2 microg l(-1). During the first 198 days before second application, 14% of the applied herbicide bentazone was detected in the leachate with maximum and mean concentrations of 445 and 172 microg l(-1), respectively. About 2% of the initial mecoprop and fluazifop dose was detected in the percolate, with mean concentrations of 23 microg l(-1), while MCPA and dimethoate had mean concentrations of 3.5 and 4.7 microg l(-1), respectively. Leachate concentrations for the remaining pesticides were generally below the detection limit (0.02-0.9 microg l(-1), below 1% of applied). Sorption studies of five pesticides showed that compounds with a low K(d) value appeared in the leachate. After 169 days, all pesticides in the biobed profile were degraded to a level below 50% of the calculated initial dose. Pesticides with K(oc) values above 100 were primarily found in the uppermost 10 cm and degraded slowest due to the low bioavailability. The 11 most degradable pesticides were all degraded such that less than 3% remained in the biobed after 169 days. Following second pesticide application of the biobed, leachate was sampled 215 and 365 days after the treatment. This showed the same pesticides to be leached out and at concentrations comparable to those of the first treatment. The same pesticides as after the first treatment were retained in the biobed.


Asunto(s)
Modelos Teóricos , Plaguicidas/química , Cromatografía Líquida de Alta Presión , Agua/química
3.
J Agric Food Chem ; 64(22): 4545-55, 2016 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-27195655

RESUMEN

Fusarium infection in wheat causes Fusarium head blight, resulting in yield losses and contamination of grains with trichothecenes. Some plant secondary metabolites inhibit accumulation of trichothecenes. Eighteen Fusarium infected wheat cultivars were harvested at five time points and analyzed for the trichothecene deoxynivalenol (DON) and 38 wheat secondary metabolites (benzoxazinoids, phenolic acids, carotenoids, and flavonoids). Multivariate analysis showed that harvest time strongly impacted the content of secondary metabolites, more distinctly for winter wheat than spring wheat. The benzoxazinoid 2-ß-glucopyranoside-2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA-glc), α-tocopherol, and the flavonoids homoorientin and orientin were identified as potential inhibitors of DON accumulation. Several phenolic acids, lutein and ß-carotene also affected DON accumulation, but the effect varied for the two wheat types. The results could form a basis for choosing wheat cultivars using metabolite profiling as a marker for selecting wheat cultivars with improved resistance against Fusarium head blight and accumulation of trichothecene toxins in wheat heads.


Asunto(s)
Fusarium/metabolismo , Micotoxinas/metabolismo , Enfermedades de las Plantas/microbiología , Tricotecenos/metabolismo , Triticum/microbiología , Contaminación de Alimentos/análisis , Estructura Molecular , Micotoxinas/química , Estaciones del Año , Metabolismo Secundario , Tricotecenos/química , Triticum/química , Triticum/crecimiento & desarrollo
4.
Pest Manag Sci ; 65(8): 857-61, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19365877

RESUMEN

BACKGROUND: Surfactants are very often used for more efficient pesticide spraying, but knowledge about their influence on the leaching potential for pesticides is very limited. In the present study, the leaching of the herbicide bentazone [3-isopropyl-1H-2, 1,3-benzothiadiazin-4(3H)-one 2,2-dioxide] was measured in columns with sandy loam soil with or without the addition of a non-ionic surfactant, octylphenol ethylene oxide condensate (Triton X-100, Triton), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), and in the presence of both surfactants (SDBS + Triton). RESULTS: The mobility of bentazone (B) increased in the following order: B + Triton (slowest) < B + SDBS + Triton < B < B + SDBS (fastest). When Triton X-100 was applied to the soil together with bentazone, the leaching of bentazone in the soil decreased significantly compared with leaching of bentazone without the addition of surfactant. SDBS and Triton X-100 neutralised their influence on the leaching speed of bentazone in the soil columns when both surfactants were applied with bentazone. CONCLUSION: From the study it can be concluded that, depending on their properties, surfactants can enhance or reduce the mobility of bentazone. By choosing a non-ionic surfactant, bentazone mobility can be reduced, giving time for degradation and thereby reducing the risk of groundwater pollution.


Asunto(s)
Benzotiadiazinas/análisis , Benzotiadiazinas/química , Dióxido de Silicio/química , Suelo/análisis , Tensoactivos/farmacología , Adsorción/efectos de los fármacos , Bencenosulfonatos/farmacología , Herbicidas/química , Movimiento (Física) , Octoxinol/farmacología , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA