RESUMEN
BACKGROUND: Nanotechnology and its application to manipulate herbal compounds to design new neuroprotective agents to manage neurotoxicity has recently increased. Cur-ZnO conjugated nanoparticles were synthesized and used in an experimental model of ketamine-induced neurotoxicity. METHODS: Cur-ZnO conjugated nanoparticles were chemically characterized, and the average crystalline size was determined. Forty-nine adult mice were divided into seven groups of seven animals each. Normal saline was given to control mice (group 1). Ketamine (25 mg/kg) was given to a second group. A third group of mice was given ketamine (25 mg/kg) in combination with curcumin (40 mg/kg), while mice in groups 4, 5, and 6 received ketamine (25 mg/kg) plus Cur-ZnO nanoparticles (10, 20, and 40 mg/kg). Group 7 received only ZnO (5 mg/kg). All doses were ip for 14 days. Hippocampal mitochondrial quadruple complex enzymes, oxidative stress, inflammation, and apoptotic characteristics were assessed. RESULTS: Cur-ZnO nanoparticles and curcumin decreased lipid peroxidation, GSSG content, IL-1ß, TNF-α, and Bax levels while increasing GSH and antioxidant enzymes like GPx, GR, and SOD while increasing Bcl-2 level and mitochondrial quadruple complex enzymes in ketamine treatment groups. CONCLUSION: The neuroprotective properties of Cur-ZnO nanoparticles were efficient in preventing ketamine-induced neurotoxicity in the mouse brain. The nanoparticle form of curcumin (Cur-ZnO) required lower doses to produce neuroprotective effects against ketamine-induced toxicity than conventional curcumin.
Asunto(s)
Curcumina , Ketamina , Nanopartículas , Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Óxido de Zinc , Ratones , Animales , Curcumina/farmacología , Neuroprotección , Óxido de Zinc/toxicidad , Ketamina/toxicidad , Estrés Oxidativo , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/prevención & controlRESUMEN
The combination therapy which has been proposed as the strategy for the cancer treatment could achieve a synergistic effect for cancer therapies and reduce the dosage of the applied drugs. On account of the the unique properties as the high absorbed water content, biocompatibility, and flexibility, the targeting nanogels have been considred as a suitable platform. Herein, a non-toxic pH/thermo-responsive hydrogel P(NIPAAm-co-DMAEMA) was synthesized and characterized through the free-radical polymerization and expanded upon an easy process for the preparation of the smart responsive nanogels; that is, the nanogels were used for the efficient and controlled delivery of the anti-cancer drug doxorubicin (DOX) and chemosensitizer curcumin (CUR) simultaneously like a promising strategy for the cancer treatment. The size of the nanogels, which were made, was about 70 nm which is relatively optimal for the enhanced permeability and retention (EPR) effects. The DOX and CUR co-loaded nanocarriers were prepared by the high encapsulation efficiency (EE). It is important to mention that the controlled drug release behavior of the nanocarriers was also investigated. An enhanced ability of DOX and CUR-loaded nanoformulation to induce the cell apoptosis in the HT-29 colon cancer cells which represented the greater antitumor efficacy than the single-drug formulations or free drugs was resulted through the In vitro cytotoxicity. Overall, according to the data, the simultaneous delivery of the dual drugs through the fabricated nanogels could synergistically potentiate the antitumor effects on the colon cancer (CC).
Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Curcumina/farmacología , Doxorrubicina/farmacología , Liberación de Fármacos , Nanogeles/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Portadores de Fármacos/farmacología , Composición de Medicamentos , Sistemas de Liberación de Medicamentos/métodos , Quimioterapia Combinada , Células HT29 , Humanos , Concentración de Iones de Hidrógeno , Metacrilatos , Nanopartículas , Tamaño de la PartículaRESUMEN
α-Glucosidase inhibition is an approved treatment for type 2 diabetes mellitus (T2DM). In an attempt to develop novel anti-α-glucosidase agents, two series of substituted imidazo[1,2-c]quinazolines, namely 6a-c and 11a-o, were synthesized using a simple, straightforward synthetic routes. These compounds were thoroughly characterized by IR, 1H and 13C NMR spectroscopy, as well as mass spectrometry and elemental analysis. Subsequently, the inhibitory activities of these compounds were evaluated against Saccharomyces cerevisiae α-glucosidase. In present study, acarbose was utilized as a positive control. These imidazoquinazolines exhibited excellent to great inhibitory potencies with IC50 values ranging from 12.44 ± 0.38 µM to 308.33 ± 0.06 µM, which were several times more potent than standard drug with IC50 value of 750.0 ± 1.5 µM. Representatively, compound 11j showed remarkable anti-α-glucosidase potency with IC50 = 12.44 ± 0.38 µM, which was 60.3 times more potent than positive control acarbose. To explore the potential inhibition mechanism, further evaluations including kinetic analysis, circular dichroism, fluorescence spectroscopy, and thermodynamic profile were carried out for the most potent compound 11j. Moreover, molecular docking studies and in silico ADME prediction for all imidazoquinazolines 6a-c and 11a-o were performed to reveal their important binding interactions, as well as their physicochemical and drug-likeness properties, respectively.
Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de Glicósido Hidrolasas , Humanos , Inhibidores de Glicósido Hidrolasas/farmacología , Acarbosa/farmacología , Quinazolinas/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cinética , Simulación del Acoplamiento Molecular , Saccharomyces cerevisiae , alfa-GlucosidasasRESUMEN
A new nano-antibiotic was synthesized from the conjugation of multi-walled carbon nanotubes with levofloxacin (MWCNT-LVX) through covalent grafting of drug with surface-modified carbon nanotubes in order to achieve an effective, safe, fast-acting nano-drug with the minimal side effects. This study is the first report on the evaluation of in vitro cell viability and antibacterial activity of nano-antibiotic along in addition to the in vivo antibacterial activity in a burn wound model. The drug-loading and release profile at different pH levels was determined using an ultraviolet-visible spectrometer. MWCNT-LVX was synthesized by a simple, reproducible and cost-effective method for the first time and characterized using various techniques, such as scanning electron microscope, transmission electron microscopy, and Brunauer-Emmett-Teller analysis, and so forth. The noncytotoxic nano-antibiotic showed more satisfactory in vitro antibacterial activity against Staphylococcus aureus compared to Pseudomona aeruginosa. The novel synthetic nano-drug possessed high loading capacity and pH-sensitive release profile; resultantly, it exhibited very potent bactericidal activity in a mouse S. aureus wound infection model compared to LVX. Based on the results, the antibacterial properties of the drug enhanced after conjugating with surface-modified MWCNTs. The nano-antibiotic has great industrialization potential for the simple route of synthesis, no toxicity, proper drug loading and release, low effective dose, and strong activity against wound infections. In virtue of unique properties, MWCNTs can serve as a controlled release and delivery system for drugs. The easy penetration to biological membranes and barriers can also increase the drug delivery at lower doses compared to the main drug alone, which can lead to the reduction of its side effects. Hence, MWCNTs can be considered a promising nano-carrier of LVX in the treatment of skin infections.
Asunto(s)
Nanotubos de Carbono , Animales , Antibacterianos/química , Antibacterianos/farmacología , Levofloxacino/farmacología , Ratones , Microscopía Electrónica de Transmisión , Nanotubos de Carbono/química , Staphylococcus aureusRESUMEN
Plant derived biogenic synthesis of nanoparticles (NP) has been the recent trend in material science as featured sustainable catalysts. A great deal of the current nanocatalytic research has been oriented on the bio-inspired green catalysts based on their wide applicability. In this context, CuO NPs are synthesized following a green approach using an herbal tea (Stachys Lavandulifolia) flower extract. The phytochemicals contained in it were used asthe internal reductant without applying harsh chemicals or strong heat. The derived nanoparticles also got stabilized by the biomolecular capping. The as-synthesized CuO NPs was characterized over FT-IR, FE-SEM, EDS, TEM, XRD, TGA and UV-Vis spectroscopy. These NPs were exploited as a competent catalyst in the aryl and heteroaryl C-heteroatom (N, O, S) cross coupling reactions affording outstanding yields. The nanocatalyst was isolated and recycled in 8 consecutive runs with reproducible catalytic activity. Rigidity of the CuO/S. Lavandulifolia nanocomposite was further justified by leaching test and heterogeneity test.
RESUMEN
A green, direct and cost-effective fabrication method is proposed for Eco-environmentally silver nanoparticles (AgNPs) through leaf extraction of Carya illinoinensis from Iran. Formation of Ag NPs was confirmed through different characterization techniques such as UV-Vis Spectroscopy, X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). UV-Visible spectrophotometer showed absorbance peak at 440 nm due to the Surface Plasmon Resonance (SPR). Based on XRD results and SEM and TEM analysis, AgNPs were crystalline with face-centered cubic geometry and in different sizes ranged 12-30 nm. Furthermore, FTIR Spectroscopy was utilized to recognize the specific functional groups responsible for reducing ion silver to silver nanoparticles and the capping agents available in the leaf extract. In addition, the antibacterial effect of Eco-friendly synthesized nanoparticles and also leaf extract, were evaluated on four pathogens by implementing minimum inhibitory concentration test (MIC) and agar diffusion assay. The MIC results exhibits more inhibiting activity against gram-negative microorganisms (Escherichia coli and Pseudomonas aeruginosa) rather than gram-positive microorganisms (Staphylococcus aureus and Listeria monocytogenes). Compared to leaf extract, nanoparticles have better antimicrobial activity against both Gram-positive and Gram-negative bacteria.
RESUMEN
One of main herbal compounds with neuroprotective effects is curcumin. Lead poisoning cause neurodegeneration effect but its clear mechanism remains unknown. The current study evaluates the role of Akt/GSK3 signaling pathway in mediating the neuroprotective effects of curcumin against lead -induced neurodegeneration in rats. Sixty adult male rats were divided to: Group 1 and 2 receiving normal saline and drinking water containing 0.075% of lead acetate. Groups 3, 4, 5, and 6 were treated concurrently with lead acetate (0.075% in drinking water) and Curcumin (10, 20, 40, and 80 mg/kg I.P, respectively). Morris water maze (MWM) was used to evaluate cognitive activity, Hippocampal oxidative, anti-oxidant, as well as inflammatory and apoptotic factors and also Akt and GSK3 protein levels were studied. We found that lead poisoning disturbed the learning and memory and simultaneous treatment with Curcumin reduced the lead -induced cognition disturbances. In addition, lead acetate treatment increased lipid peroxidation and the levels of IL-1ß, TNF-α , Bax, GSK3 (total and phosphorylated) while reducing reduced form of GSH, Bcl-2, and Akt3 (total and phosphorylated) levels in the hippocampus. Lead also reduced the activity of SOD, GPx, and GR in the hippocampus. In contrast, various doses of Curcumin attenuated lead -induced apoptosis, oxidative stress and inflammation; while elevating P-Akt and reduced of GSK3 levels. Thus, Curcumin via mediation of Akt/GSK3 signaling pathway confers neuroprotection against lead-induced neurodegeneration in hippocampus.
RESUMEN
The present report represents the synthesis of a novel Pd NPs immobilized over a natural polysaccharide (pectin) coated Fe3O4 magnetic nanocomposite material (Fe3O4@pectin/Pd) for investigating the cardiovascular protective effects. The biomolecular functionalization not only stabilizes the ferrite nanoparticles from agglomeration but also provides an environment for the biogenic reduction of Pd2+ ions. This protocol is a promising breakthrough for the synthesis of a quasi-heterogeneous catalyst, a bridge between heterogeneous and homogeneous medium. The structure, morphology and physicochemical properties of the material were characterized utilizing various analytical techniques like FT-IR, FE-SEM, TEM, VSM, EDX-elemental mapping, ICP, EDX and XPS. The catalyst showed excellent reactivity in C-C and C-N cross coupling reactions via Suzuki and Buchwald-Hartwig reactions respectively. An array of different biphenyls and aryl amines were then procured by reactions of various aryl halides with phenylboronic acid or secondary amines over the catalyst affording good to excellent yields. The catalyst was easily recoverable using an external magnet and thereafter recycled for several trials with insignificant palladium leaching or loss in catalytic performance. To investigate the cardiovascular protective activities of catalyst, the MTT assay was done on Human Aortic Endothelial Cells (HAEC), Human Coronary Artery Endothelial Cells (HCAEC), and Human Pulmonary Artery Endothelial Cells (HPAEC) cell lines. Nanocatalyst-treated cell cutlers significantly (p ≤ 0.01) decreased the caspase-3 activity, and DNA fragmentation. It raised the cell viability and mitochondrial membrane potential in the high concentration of Mitoxantrone-treated HAEC, HCAEC, and HPAEC cells. According to the above findings, nanocatalyst can be administrated as a cardiovascular protective drug for the treatment of cardiovascular diseases after approving in the clinical trial studies in humans.
Asunto(s)
Cardiotónicos/síntesis química , Compuestos Férricos/química , Nanopartículas del Metal/química , Paladio/química , Pectinas/química , Apoptosis , Cardiotónicos/farmacología , Catálisis , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Endotelio Vascular/citología , HumanosRESUMEN
For first time, we designed an environment friendly technique novel hybrid magnetic nanocomposite with the potency of both reducing and stabilizing agent for immobilization of metal nanoparticles. Stachys lavandulifolia extract having a lot of carbonyl and phenolic hydroxyl functional groups can be applied in the Fe3O4 NPs modification. Furthermore, in aqueous solution, the complexation feasibility of polyphenols with silver ions can enhance the capacity and surface properties of the Fe3O4@S. lavandulifolia NPs for sorbent and in situ reduction of silver ions. So, as both the stabilizing and reducing agent, the novel magnetic nano-sorbent (Fe3O4@S. lavandulifolia NPs) has potential ability for silver nano particles immobilization to create a novel magnetic silver nanocatalyst. So that, no additional reductants, toxic reagents and intricate instruments are needed to prepare the catalyst. The morphology, structure, and physicochemical properties were elucidated by several analytical methods like, field emission scanning electron microscope (FESEM), high resolution transmission electron microscopy (HRTEM) images, energy-dispersive X-ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), FT-IR spectroscopy, and inductively coupled plasma (ICP). As recyclable nanocatalyst, Fe3O4@S. lavandulifolia/Ag indicated high catalytic activity for 4-nitrophenol (4-NP) reduction at ambient temperature. Ultimately, the Fe3O4@S. lavandulifolia/Ag antibacterial properties was examined against two bacteria (Staphylococcus aureus (Staph. aureus) and Escherichia coli (E. coli)) and indicated its antibacterial activities against gram negative (E. coli) bacteria and gram positive (Staph. aureus).
Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Compuestos Férricos/química , Nanopartículas del Metal/química , Nitrofenoles/química , Plata/química , Stachys/química , Tés de Hierbas/análisis , Escherichia coli/efectos de los fármacos , Escherichia coli/ultraestructura , Microscopía Electrónica de Transmisión , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/ultraestructuraRESUMEN
This report contains the procedure implemented in the preparation of Fe3O4@SiO2/isoniazide/Pd as a novel magnetic nanocatalyst, in which isoniazide groups are utilized (as linkers) to secure palladium nanoparticles (Pd NPs) to the Fe3O4 exterior without agglomeration. The resultant catalyst was characterized through performing transmission electron microscopy (TEM), scanning electron microscopy (SEM), wavelength-dispersive X-ray spectroscopy (WDX), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR), inductively coupled plasma (ICP), Energy-dispersive X-ray spectroscopy (EDS), vibrating sample magnetometer (VSM) and X-ray photoelectron spectroscopy (XPS). The catalytic behavior of Fe3O4@SiO2/isoniazide/Pd was investigated to synthesis of biaryl compounds by Suzuki coupling reactions. Interestingly, the novel catalyst was able to be recovered and recycled six times without any noticeable loss in activity.
RESUMEN
The present study was conducted to synthesize palladium nanoparticles (Pd NPs) through a facile and green route using non-toxic and renewable natural black tea leaves (Camellia sinensis) extract, as the reducing and stabilizing agent. The as-prepared Pd@B.tea NPs catalyst was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), fourier transformed infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The Pd@B.tea NPs catalyst could be used as an efficient and heterogeneous catalyst for Suzuki coupling reactions between phenylboronic acid and a range of aryl halides (X=I, Br, Cl) and also the reduction of 4-nitrophenol (4-NP) using sodium borohydride in an environmental friendly medium. Excellent yields of products were obtained with a wide range of substrates and the catalyst was recycled 7 times without any significant loss of its catalytic activity.
Asunto(s)
Camellia sinensis/química , Nanopartículas del Metal/química , Nitrofenoles/química , Paladio/química , Hojas de la Planta/química , Borohidruros/química , Ácidos Borónicos/química , Catálisis , Tecnología Química Verde , Nanopartículas del Metal/ultraestructura , Oxidación-Reducción , Extractos Vegetales/químicaRESUMEN
An efficient procedure has been proposed for the loading of sulfonic acid groups on the surface of polyethylene glycol 400 (PEG400)-encapsulated Fe3O4 nanoparticles to synthesize a core-shell Fe3O4@PEG400-SO3H nano catalyst. Surface functionalization of magnetic particles in such a way is a refined method of bridging the gap amongst heterogeneous and homogeneous catalysis. The procured nano catalyst was classified through Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), wavelength-dispersive X-ray spectroscopy (WDX), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), BET, and back titration. The nanoparticles have been utilized as a convenient catalyst for synthesizing a variety of N-substituted pyrroles via Paal-Knorr reactions of γ-diketones with amines, diamines or triamines at room temperature under solvent-free conditions. Notably, the newly produced catalyst was recoverable and recyclable (9 times) without any noticeable decrease in its activity.