Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Am J Hum Genet ; 97(3): 475-82, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26299364

RESUMEN

Adams-Oliver syndrome (AOS) is a rare developmental disorder characterized by the presence of aplasia cutis congenita (ACC) of the scalp vertex and terminal limb-reduction defects. Cardiovascular anomalies are also frequently observed. Mutations in five genes have been identified as a cause for AOS prior to this report. Mutations in EOGT and DOCK6 cause autosomal-recessive AOS, whereas mutations in ARHGAP31, RBPJ, and NOTCH1 lead to autosomal-dominant AOS. Because RBPJ, NOTCH1, and EOGT are involved in NOTCH signaling, we hypothesized that mutations in other genes involved in this pathway might also be implicated in AOS pathogenesis. Using a candidate-gene-based approach, we prioritized DLL4, a critical NOTCH ligand, due to its essential role in vascular development in the context of cardiovascular features in AOS-affected individuals. Targeted resequencing of the DLL4 gene with a custom enrichment panel in 89 independent families resulted in the identification of seven mutations. A defect in DLL4 was also detected in two families via whole-exome or genome sequencing. In total, nine heterozygous mutations in DLL4 were identified, including two nonsense and seven missense variants, the latter encompassing four mutations that replace or create cysteine residues, which are most likely critical for maintaining structural integrity of the protein. Affected individuals with DLL4 mutations present with variable clinical expression with no emerging genotype-phenotype correlations. Our findings demonstrate that DLL4 mutations are an additional cause of autosomal-dominant AOS or isolated ACC and provide further evidence for a key role of NOTCH signaling in the etiology of this disorder.


Asunto(s)
Displasia Ectodérmica/genética , Displasia Ectodérmica/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/patología , Mutación/genética , Dermatosis del Cuero Cabelludo/congénito , Transducción de Señal/genética , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas de Unión al Calcio , Heterocigoto , Humanos , Datos de Secuencia Molecular , Linaje , Receptores Notch/genética , Dermatosis del Cuero Cabelludo/genética , Dermatosis del Cuero Cabelludo/patología , Análisis de Secuencia de ADN
2.
Eur J Hum Genet ; 25(11): 1195-1201, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28853722

RESUMEN

Dilated cardiomyopathy (DCM) is extremely heterogeneous with a large proportion due to dominantly inherited disease-causing variants in sarcomeric genes. Recessive metabolic diseases may cause DCM, usually with onset in childhood, and in the context of systemic disease. Whether metabolic defects can also cause adult-onset DCM is currently unknown. Therefore, we performed an extensive metabolic screening in 36 consecutive adult-onset DCM patients. Diagnoses were confirmed by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). Measurement of propionyl-CoA carboxylase (PCC) activity was done in fibroblasts. Whole exome sequencing (WES) data of 157 additional DCM patients were analyzed for genetic defects. We found a metabolic profile characteristic for propionic acidemia in a patient with severe DCM from 55 years of age. Genetic analysis demonstrated compound heterozygous variants in PCCA. Enzymatic activity of PCC in fibroblasts was markedly reduced. A targeted analysis of the PCCA and PCCB genes using available WES data from 157 further DCM patients subsequently identified another patient with propionic acidemia. This patient had compound heterozygous variants in PCCB, and developed severe DCM from 42 years of age. Adult-onset DCM can be caused by propionic acidemia, an autosomal recessive inheritable metabolic disorder usually presenting as neonatal or childhood disease. Current guidelines advise a low-protein diet to ameliorate or prevent detrimental aspects of the disease. Long-term follow-up of a larger group of patients may show whether this diet would also ameliorate DCM. Our results suggest that diagnostic metabolic screening to identify propionic acidemia and related disorders in DCM patients is justified.


Asunto(s)
Cardiomiopatía Dilatada/genética , Metilmalonil-CoA Descarboxilasa/genética , Acidemia Propiónica/complicaciones , Adulto , Anciano , Anciano de 80 o más Años , Cardiomiopatía Dilatada/sangre , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/orina , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Heterocigoto , Humanos , Masculino , Metilmalonil-CoA Descarboxilasa/metabolismo , Persona de Mediana Edad , Mutación , Linaje , Acidemia Propiónica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA