Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(14): 2398-2416.e12, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37402365

RESUMEN

Nuclear receptor-binding SET-domain protein 1 (NSD1), a methyltransferase that catalyzes H3K36me2, is essential for mammalian development and is frequently dysregulated in diseases, including Sotos syndrome. Despite the impacts of H3K36me2 on H3K27me3 and DNA methylation, the direct role of NSD1 in transcriptional regulation remains largely unknown. Here, we show that NSD1 and H3K36me2 are enriched at cis-regulatory elements, particularly enhancers. NSD1 enhancer association is conferred by a tandem quadruple PHD (qPHD)-PWWP module, which recognizes p300-catalyzed H3K18ac. By combining acute NSD1 depletion with time-resolved epigenomic and nascent transcriptomic analyses, we demonstrate that NSD1 promotes enhancer-dependent gene transcription by facilitating RNA polymerase II (RNA Pol II) pause release. Notably, NSD1 can act as a transcriptional coactivator independent of its catalytic activity. Moreover, NSD1 enables the activation of developmental transcriptional programs associated with Sotos syndrome pathophysiology and controls embryonic stem cell (ESC) multilineage differentiation. Collectively, we have identified NSD1 as an enhancer-acting transcriptional coactivator that contributes to cell fate transition and Sotos syndrome development.


Asunto(s)
Proteínas Nucleares , Síndrome de Sotos , Animales , Humanos , Proteínas Nucleares/metabolismo , Cromatina , Síndrome de Sotos/genética , Síndrome de Sotos/metabolismo , Histona Metiltransferasas/genética , Factores de Transcripción/genética , Diferenciación Celular/genética , Mamíferos/metabolismo , N-Metiltransferasa de Histona-Lisina/genética
2.
Mol Cell ; 82(9): 1691-1707.e8, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349793

RESUMEN

Transposable elements (TEs) are widespread genetic parasites known to be kept under tight transcriptional control. Here, we describe a functional connection between the mouse-orthologous "nuclear exosome targeting" (NEXT) and "human silencing hub" (HUSH) complexes, involved in nuclear RNA decay and the epigenetic silencing of TEs, respectively. Knocking out the NEXT component ZCCHC8 in embryonic stem cells results in elevated TE RNA levels. We identify a physical interaction between ZCCHC8 and the MPP8 protein of HUSH and establish that HUSH recruits NEXT to chromatin at MPP8-bound TE loci. However, while NEXT and HUSH both dampen TE RNA expression, their activities predominantly affect shorter non-polyadenylated and full-length polyadenylated transcripts, respectively. Indeed, our data suggest that the repressive action of HUSH promotes a condition favoring NEXT RNA decay activity. In this way, transcriptional and post-transcriptional machineries synergize to suppress the genotoxic potential of TE RNAs.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma , Exosomas , Animales , Cromatina/genética , Cromatina/metabolismo , Elementos Transponibles de ADN/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Exosomas/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , ARN/metabolismo , Estabilidad del ARN
3.
Mol Cell ; 82(6): 1169-1185.e7, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35202573

RESUMEN

Polycomb group (PcG) proteins are essential for post-implantation development by depositing repressive histone modifications at promoters, mainly CpG islands (CGIs), of developmental regulator genes. However, promoter PcG marks are erased after fertilization and de novo established in peri-implantation embryos, coinciding with the transition from naive to primed pluripotency. Nevertheless, the molecular basis for this establishment remains unknown. In this study, we show that the expression of the long KDM2B isoform (KDM2BLF), which contains the demethylase domain, is specifically induced at peri-implantation and that its H3K36me2 demethylase activity is required for PcG enrichment at CGIs. Moreover, KDM2BLF interacts with BRG1/BRM-associated factor (BAF) and stabilizes BAF occupancy at CGIs for subsequent gain of accessibility, which precedes PcG enrichment. Consistently, KDM2BLF inactivation results in significantly delayed post-implantation development. In summary, our data unveil dynamic chromatin configuration of CGIs during exit from naive pluripotency and provide a conceptual framework for the spatiotemporal establishment of PcG functions.


Asunto(s)
Cromatina , Proteínas de Drosophila , Islas de CpG , Proteínas de Drosophila/metabolismo , Código de Histonas , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Regiones Promotoras Genéticas
4.
Cell ; 158(6): 1281-1292, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25215487

RESUMEN

A dichotomous choice for metazoan cells is between proliferation and differentiation. Measuring tRNA pools in various cell types, we found two distinct subsets, one that is induced in proliferating cells, and repressed otherwise, and another with the opposite signature. Correspondingly, we found that genes serving cell-autonomous functions and genes involved in multicellularity obey distinct codon usage. Proliferation-induced and differentiation-induced tRNAs often carry anticodons that correspond to the codons enriched among the cell-autonomous and the multicellularity genes, respectively. Because mRNAs of cell-autonomous genes are induced in proliferation and cancer in particular, the concomitant induction of their codon-enriched tRNAs suggests coordination between transcription and translation. Histone modifications indeed change similarly in the vicinity of cell-autonomous genes and their corresponding tRNAs, and in multicellularity genes and their tRNAs, suggesting the existence of transcriptional programs coordinating tRNA supply and demand. Hence, we describe the existence of two distinct translation programs that operate during proliferation and differentiation.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Biosíntesis de Proteínas , ARN de Transferencia/genética , Anticodón , Línea Celular Tumoral , Transformación Celular Neoplásica , Codón , Histonas/metabolismo , Humanos , Neoplasias/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Transcriptoma
5.
Nature ; 615(7951): 339-348, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859550

RESUMEN

Trimethylation of histone H3 lysine 4 (H3K4me3) is associated with transcriptional start sites and has been proposed to regulate transcription initiation1,2. However, redundant functions of the H3K4 SET1/COMPASS methyltransferase complexes complicate the elucidation of the specific role of H3K4me3 in transcriptional regulation3,4. Here, using mouse embryonic stem cells as a model system, we show that acute ablation of shared subunits of the SET1/COMPASS complexes leads to a complete loss of all H3K4 methylation. Turnover of H3K4me3 occurs more rapidly than that of H3K4me1 and H3K4me2 and is dependent on KDM5 demethylases. Notably, acute loss of H3K4me3 does not have detectable effects on transcriptional initiation but leads to a widespread decrease in transcriptional output, an increase in RNA polymerase II (RNAPII) pausing and slower elongation. We show that H3K4me3 is required for the recruitment of the integrator complex subunit 11 (INTS11), which is essential for the eviction of paused RNAPII and transcriptional elongation. Thus, our study demonstrates a distinct role for H3K4me3 in transcriptional pause-release and elongation rather than transcriptional initiation.


Asunto(s)
Histonas , Células Madre Embrionarias de Ratones , Regiones Promotoras Genéticas , ARN Polimerasa II , Elongación de la Transcripción Genética , Terminación de la Transcripción Genética , Animales , Ratones , Regulación de la Expresión Génica , Histona Demetilasas/metabolismo , Histonas/química , Histonas/metabolismo , Metilación , Células Madre Embrionarias de Ratones/metabolismo , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo
6.
Mol Cell ; 81(8): 1749-1765.e8, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33657400

RESUMEN

Acetylation of lysine 16 on histone H4 (H4K16ac) is catalyzed by histone acetyltransferase KAT8 and can prevent chromatin compaction in vitro. Although extensively studied in Drosophila, the functions of H4K16ac and two KAT8-containing protein complexes (NSL and MSL) are not well understood in mammals. Here, we demonstrate a surprising complex-dependent activity of KAT8: it catalyzes H4K5ac and H4K8ac as part of the NSL complex, whereas it catalyzes the bulk of H4K16ac as part of the MSL complex. Furthermore, we show that MSL complex proteins and H4K16ac are not required for cell proliferation and chromatin accessibility, whereas the NSL complex is essential for cell survival, as it stimulates transcription initiation at the promoters of housekeeping genes. In summary, we show that KAT8 switches catalytic activity and function depending on its associated proteins and that, when in the NSL complex, it catalyzes H4K5ac and H4K8ac required for the expression of essential genes.


Asunto(s)
Histona Acetiltransferasas/genética , Homeostasis/genética , Transcripción Genética/genética , Acetilación , Animales , Línea Celular , Línea Celular Tumoral , Núcleo Celular/genética , Proliferación Celular/genética , Cromatina/genética , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Células K562 , Lisina/genética , Masculino , Ratones , Regiones Promotoras Genéticas/genética , Células THP-1
7.
EMBO J ; 42(24): e114221, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37987160

RESUMEN

Efficient treatment of acute myeloid leukemia (AML) patients remains a challenge despite recent therapeutic advances. Here, using a CRISPRi screen targeting chromatin factors, we identified the nucleosome-remodeling factor (NURF) subunit BPTF as an essential regulator of AML cell survival. We demonstrate that BPTF forms an alternative NURF chromatin remodeling complex with SMARCA5 and BAP18, which regulates the accessibility of a large set of insulator regions in leukemic cells. This ensures efficient CTCF binding and boundary formation between topologically associated domains that is essential for maintaining the leukemic transcriptional programs. We also demonstrate that the well-studied PHD2-BROMO chromatin reader domains of BPTF, while contributing to complex recruitment to chromatin, are dispensable for leukemic cell growth. Taken together, our results uncover how the alternative NURF complex contributes to leukemia and provide a rationale for its targeting in AML.


Asunto(s)
Proteínas de Drosophila , Leucemia Mieloide Aguda , Humanos , Cromatina/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas de Drosophila/metabolismo , Ensamble y Desensamble de Cromatina
8.
Mol Cell ; 74(1): 8-18, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30951652

RESUMEN

The polycomb repressive complex 2 (PRC2) is a chromatin-associated methyltransferase catalyzing mono-, di-, and trimethylation of lysine 27 on histone H3 (H3K27). This activity is required for normal organismal development and maintenance of gene expression patterns to uphold cell identity. PRC2 function is often deregulated in disease and is a promising candidate for therapeutic targeting in cancer. In this review, we discuss the molecular mechanisms proposed to take part in modulating PRC2 recruitment and shaping H3K27 methylation patterns across the genome. This includes consideration of factors influencing PRC2 residence time on chromatin and PRC2 catalytic activity with a focus on the mechanisms giving rise to regional preferences and differential deposition of H3K27 methylation. We further discuss existing evidence for functional diversity between distinct subsets of PRC2 complexes with the aim of extracting key concepts and highlighting major open questions toward a more complete understanding of PRC2 function.


Asunto(s)
Metilación de ADN , Histonas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Ensamble y Desensamble de Cromatina , Humanos , Lisina , Metilación , Complejo Represivo Polycomb 2/genética , Unión Proteica
9.
Mol Cell ; 76(3): 423-436.e3, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31521506

RESUMEN

The Polycomb repressive complex 2 (PRC2) catalyzes H3K27 methylation across the genome, which impacts transcriptional regulation and is critical for establishment of cell identity. Because of its essential function during development and in cancer, understanding the delineation of genome-wide H3K27 methylation patterns has been the focus of intense investigation. PRC2 methylation activity is abundant and dispersed throughout the genome, but the highest activity is specifically directed to a subset of target sites that are stably occupied by the complex and highly enriched for H3K27me3. Here, we show, by systematically knocking out single and multiple non-core subunits of the PRC2 complex in mouse embryonic stem cells, that they each contribute to directing PRC2 activity to target sites. Furthermore, combined knockout of six non-core subunits reveals that, while dispensable for global H3K27 methylation levels, the non-core PRC2 subunits are collectively required for focusing H3K27me3 activity to specific sites in the genome.


Asunto(s)
Metilación de ADN , Silenciador del Gen , Histonas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Línea Celular , Histonas/genética , Masculino , Metilación , Ratones , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/genética , Conformación Proteica , Subunidades de Proteína , Relación Estructura-Actividad
11.
Genes Dev ; 31(23-24): 2313-2324, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29352018

RESUMEN

One of the most striking results in the area of chromatin and cancer in recent years has been the identification of recurrent mutations in histone genes in pediatric cancers. These mutations occur at high frequency and lead to the expression of mutant histones that exhibit oncogenic features. Thus, they are termed oncohistones. Thus far, mutations have been found in the genes encoding histone H3 and its variants. The expression of the oncohistones affects the global chromatin landscape through mechanisms that have just begun to be unraveled. In this review, we provide an overview of histone mutations that have been identified and discuss the possible mechanisms by which they contribute to tumor development. We further discuss the targeted therapies that have been proposed to treat cancers expressing oncohistones.


Asunto(s)
Histonas/genética , Neoplasias/genética , Carcinogénesis/genética , Condroblastoma/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica/genética , Terapia Genética , Humanos , Mutación , Neoplasias/terapia
12.
Blood ; 139(2): 245-255, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34359076

RESUMEN

Novel therapies for the treatment of acute myeloid leukemia (AML) are urgently needed, because current treatments do not cure most patients with AML. We report a domain-focused, kinome-wide CRISPR-Cas9 screening that identified protein kinase targets for the treatment of AML, which led to the identification of Rio-kinase 2 (RIOK2) as a potential novel target. Loss of RIOK2 led to a decrease in protein synthesis and to ribosomal instability followed by apoptosis in leukemic cells, but not in fibroblasts. Moreover, the ATPase function of RIOK2 was necessary for cell survival. When a small-molecule inhibitor was used, pharmacological inhibition of RIOK2 similarly led to loss of protein synthesis and apoptosis and affected leukemic cell growth in vivo. Our results provide proof of concept for targeting RIOK2 as a potential treatment of patients with AML.


Asunto(s)
Leucemia Mieloide Aguda , Inhibidores de Proteínas Quinasas , Animales , Ratones , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sistemas CRISPR-Cas , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Terapia Molecular Dirigida , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología
13.
Blood ; 139(25): 3630-3646, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35421216

RESUMEN

Leukemic transformation (LT) of myeloproliferative neoplasm (MPN) has a dismal prognosis and is largely fatal. Mutational inactivation of TP53 is the most common somatic event in LT; however, the mechanisms by which TP53 mutations promote LT remain unresolved. Using an allelic series of mouse models of Jak2/Trp53 mutant MPN, we identify that only biallelic inactivation of Trp53 results in LT (to a pure erythroleukemia [PEL]). This PEL arises from the megakaryocyte-erythroid progenitor population. Importantly, the bone morphogenetic protein 2/SMAD pathway is aberrantly activated during LT and results in abnormal self-renewal of megakaryocyte-erythroid progenitors. Finally, we identify that Jak2/Trp53 mutant PEL is characterized by recurrent copy number alterations and DNA damage. Using a synthetic lethality strategy, by targeting active DNA repair pathways, we show that this PEL is highly sensitive to combination WEE1 and poly(ADP-ribose) polymerase inhibition. These observations yield new mechanistic insights into the process of p53 mutant LT and offer new, clinically translatable therapeutic approaches.


Asunto(s)
Trastornos Mieloproliferativos , Proteína p53 Supresora de Tumor , Animales , Proteína Morfogenética Ósea 2/genética , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Células Progenitoras de Megacariocitos y Eritrocitos/metabolismo , Megacariocitos/metabolismo , Ratones , Mutación , Trastornos Mieloproliferativos/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
14.
Nat Rev Mol Cell Biol ; 13(5): 297-311, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22473470

RESUMEN

Histone modifications are thought to regulate chromatin structure, transcription and other nuclear processes. Histone methylation was originally believed to be an irreversible modification that could only be removed by histone eviction or by dilution during DNA replication. However, the isolation of two families of enzymes that can demethylate histones has changed this notion. The biochemical activities of these histone demethylases towards specific Lys residues on histones, and in some cases non-histone substrates, have highlighted their importance in developmental control, cell-fate decisions and disease. Their ability to be regulated through protein-targeting complexes and post-translational modifications is also beginning to shed light on how they provide dynamic control during transcription.


Asunto(s)
Histona Demetilasas/fisiología , Procesamiento Proteico-Postraduccional , Animales , Cromatina/metabolismo , Regulación de la Expresión Génica , Histona Demetilasas/química , Histona Demetilasas/metabolismo , Histonas/metabolismo , Humanos , Metilación , Neoplasias/enzimología , Neoplasias/metabolismo , Estructura Terciaria de Proteína , Especificidad por Sustrato
17.
Genes Dev ; 30(7): 733-50, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27036965

RESUMEN

The pattern of DNA methylation at cytosine bases in the genome is tightly linked to gene expression, and DNA methylation abnormalities are often observed in diseases. The ten eleven translocation (TET) enzymes oxidize 5-methylcytosines (5mCs) and promote locus-specific reversal of DNA methylation. TET genes, and especially TET2, are frequently mutated in various cancers, but how the TET proteins contribute to prevent the onset and maintenance of these malignancies is largely unknown. Here, we highlight recent advances in understanding the physiological function of the TET proteins and their role in regulating DNA methylation and transcription. In addition, we discuss some of the key outstanding questions in the field.


Asunto(s)
Metilación de ADN/fisiología , Dioxigenasas/metabolismo , Neoplasias/enzimología , Animales , Citosina/metabolismo , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética , Oxidación-Reducción , Proteínas Proto-Oncogénicas/metabolismo
18.
Genes Dev ; 30(11): 1278-88, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27257215

RESUMEN

Acute myeloid leukemias (AMLs) with a rearrangement of the mixed-linage leukemia (MLL) gene are aggressive hematopoietic malignancies. Here, we explored the feasibility of using the H3K9- and H3K36-specific demethylases Jmjd2/Kdm4 as putative drug targets in MLL-AF9 translocated leukemia. Using Jmjd2a, Jmjd2b, and Jmjd2c conditional triple-knockout mice, we show that Jmjd2/Kdm4 activities are required for MLL-AF9 translocated AML in vivo and in vitro. We demonstrate that expression of the interleukin 3 receptor α (Il3ra also known as Cd123) subunit is dependent on Jmjd2/Kdm4 through a mechanism involving removal of H3K9me3 from the promoter of the Il3ra gene. Importantly, ectopic expression of Il3ra in Jmjd2/Kdm4 knockout cells alleviates the requirement of Jmjd2/Kdm4 for the survival of AML cells, showing that Il3ra is a critical downstream target of Jmjd2/Kdm4 in leukemia. These results suggest that the JMJD2/KDM4 proteins are promising drug targets for the treatment of AML.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Receptor de Interleucina-3/genética , Subunidad alfa del Receptor de Interleucina-3/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/fisiopatología , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Metilación , Ratones , Ratones Noqueados , Unión Proteica , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
20.
Genome Res ; 30(8): 1119-1130, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32747411

RESUMEN

Polycomb group proteins are important for maintaining gene expression patterns and cell identity in metazoans. The mammalian Polycomb repressive deubiquitinase (PR-DUB) complexes catalyze removal of monoubiquitination on lysine 119 of histone H2A (H2AK119ub1) through a multiprotein core comprised of BAP1, HCFC1, FOXK1/2, and OGT in combination with either of ASXL1, 2, or 3. Mutations in PR-DUB components are frequent in cancer. However, mechanistic understanding of PR-DUB function in gene regulation is limited. Here, we show that BAP1 is dependent on the ASXL proteins and FOXK1/2 in facilitating gene activation across the genome. Although PR-DUB was previously shown to cooperate with PRC2, we observed minimal overlap and functional interaction between BAP1 and PRC2 in embryonic stem cells. Collectively, these results demonstrate that PR-DUB, by counteracting accumulation of H2AK119ub1, maintains chromatin in an optimal configuration ensuring expression of genes important for general functions such as cell metabolism and homeostasis.


Asunto(s)
Cromatina/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Regulación de la Expresión Génica/genética , Histonas/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Animales , Proliferación Celular/genética , Células Cultivadas , Cromatina/genética , Enzimas Desubicuitinizantes/genética , Factores de Transcripción Forkhead/metabolismo , Técnicas de Inactivación de Genes , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Células Madre Embrionarias de Ratones , Proteínas del Grupo Polycomb/genética , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA