Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem ; 24(9): 2072-96, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27039250

RESUMEN

In this study, we disclose the design and synthesis of novel 4-susbtituted nipecotic acid derivatives as inhibitors of the GABA transporter mGAT1. Based on molecular modeling studies the compounds are assumed to adopt a binding pose similar to that of the potent mGAT1 inhibitor nipecotic acid. As substitution in 4-position should not cause an energetically unfavorable orientation of nipecotic acid as it is the case for N-substituted derivatives this is expected to lead to highly potent binders. For the synthesis of novel 4-substituted nipecotic acid derivatives a linear synthetic strategy was employed. As a key step, palladium catalyzed cross coupling reactions were used to attach the required biaryl moieties to the ω-position of the alkenyl- or alkynyl spacers of varying length in the 4-position of the nipecotic acid scaffold. The resulting amino acids were characterized with respect to their binding affinities and inhibitory potencies at mGAT1. Though the biological activities found were generally insignificant to poor, two compounds, one of which possesses a reasonable binding affinity for mGAT1, rac-57, the other a notable inhibitory potency at mGAT4, rac-84, both displaying a slight subtype selectivity for the individual transporters, could be identified.


Asunto(s)
Inhibidores de Recaptación de GABA/farmacología , Ácidos Nipecóticos/síntesis química , Evaluación Preclínica de Medicamentos , Ácidos Nipecóticos/farmacología
2.
J Med Chem ; 57(4): 1488-94, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24491146

RESUMEN

The serotonin subtype 2C (5HT2C) receptor is an emerging and promising drug target to treat several disorders of the human central nervous system. In this current report, two potent and selective 5HT2C full agonists, WAY-163909 (2) and vabicaserin (3), were radiolabeled with carbon-11 via Pictet-Spengler cyclization with [(11)C]formaldehyde and used in positron emission tomography (PET) imaging. Reaction conditions were optimized to exclude the major source of isotope dilution caused by the previously unknown breakdown of N,N-dimethylformamide (DMF) to formaldehyde at high temperature under mildly acid conditions. In vivo PET imaging was utilized to evaluate the pharmacokinetics and distribution of the carbon-11 labeled 5HT2C agonists. Both radiolabeled molecules exhibit high blood-brain barrier (BBB) penetration and nonspecific binding, which was unaltered by preadministration of the unlabeled agonist. Our work demonstrates that Pictet-Spengler cyclization can be used to label drugs with carbon-11 to study their pharmacokinetics and for evaluation as PET radiotracers.


Asunto(s)
Azepinas/química , Radioisótopos de Carbono/química , Compuestos Heterocíclicos de 4 o más Anillos/química , Indoles/química , Agonistas de Receptores de Serotonina/química , Ciclización , Tomografía de Emisión de Positrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA