Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35682749

RESUMEN

Microbial conversion of biomass relies on a complex combination of enzyme systems promoting synergy to overcome biomass recalcitrance. Some thermophilic bacteria have been shown to exhibit particularly high levels of cellulolytic activity, making them of particular interest for biomass conversion. These bacteria use varying combinations of CAZymes that vary in complexity from a single catalytic domain to large multi-modular and multi-functional architectures to deconstruct biomass. Since the discovery of CelA from Caldicellulosiruptor bescii which was identified as one of the most active cellulase so far identified, the search for efficient multi-modular and multi-functional CAZymes has intensified. One of these candidates, GuxA (previously Acel_0615), was recently shown to exhibit synergy with other CAZymes in C. bescii, leading to a dramatic increase in growth on biomass when expressed in this host. GuxA is a multi-modular and multi-functional enzyme from Acidothermus cellulolyticus whose catalytic domains include a xylanase/endoglucanase GH12 and an exoglucanase GH6, representing a unique combination of these two glycoside hydrolase families in a single CAZyme. These attributes make GuxA of particular interest as a potential candidate for thermophilic industrial enzyme preparations. Here, we present a more complete characterization of GuxA to understand the mechanism of its activity and substrate specificity. In addition, we demonstrate that GuxA exhibits high levels of synergism with E1, a companion endoglucanase from A. cellulolyticus. We also present a crystal structure of one of the GuxA domains and dissect the structural features that might contribute to its thermotolerance.


Asunto(s)
Actinobacteria , Actinomycetales , Celulasa , Biomasa , Celulasa/química , Celulosa/química , Humanos
2.
Biotechnol Biofuels Bioprod ; 15(1): 23, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35227303

RESUMEN

BACKGROUND: Terrestrial plant biomass is the primary renewable carbon feedstock for enabling transition to a sustainable bioeconomy. Consolidated bioprocessing (CBP) by the cellulolytic thermophile Clostridium thermocellum offers a single step microbial platform for production of biofuels and biochemicals via simultaneous solubilization of carbohydrates from lignocellulosic biomass and conversion to products. Here, solubilization of cell wall cellulosic, hemicellulosic, and pectic polysaccharides in the liquor and solid residues generated during CBP of poplar biomass by C. thermocellum was analyzed. RESULTS: The total amount of biomass solubilized in the C. thermocellum DSM1313 fermentation platform was 5.8, 10.3, and 13.7% of milled non-pretreated poplar after 24, 48, and 120 h, respectively. These results demonstrate solubilization of 24% cellulose and 17% non-cellulosic sugars after 120 h, consistent with prior reports. The net solubilization of non-cellulosic sugars by C. thermocellum (after correcting for the uninoculated control fermentations) was 13 to 36% of arabinose (Ara), xylose (Xyl), galactose (Gal), mannose (Man), and glucose (Glc); and 15% and 3% of fucose and glucuronic acid, respectively. No rhamnose was solubilized and 71% of the galacturonic acid (GalA) was solubilized. These results indicate that C. thermocellum may be selective for the types and/or rate of solubilization of the non-cellulosic wall polymers. Xyl, Man, and Glc were found to accumulate in the fermentation liquor at levels greater than in uninoculated control fermentations, whereas Ara and Gal did not accumulate, suggesting that C. thermocellum solubilizes both hemicelluloses and pectins but utilizes them differently. After five days of fermentation, the relative amount of Rha in the solid residues increased 21% indicating that the Rha-containing polymer rhamnogalacturonan I (RG-I) was not effectively solubilized by C. thermocellum CBP, a result confirmed by immunoassays. Comparison of the sugars in the liquor versus solid residue showed that C. thermocellum solubilized hemicellulosic xylan and mannan, but did not fully utilize them, solubilized and appeared to utilize pectic homogalacturonan, and did not solubilize RG-I. CONCLUSIONS: The significant relative increase in RG-I in poplar solid residues following CBP indicates that C. thermocellum did not solubilize RG-I. These results support the hypothesis that this pectic glycan may be one barrier for efficient solubilization of poplar by C. thermocellum.

3.
FEBS J ; 287(20): 4370-4388, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32064769

RESUMEN

Biomass deconstruction remains integral for enabling second-generation biofuel production at scale. However, several steps necessary to achieve significant solubilization of biomass, notably harsh pretreatment conditions, impose economic barriers to commercialization. By employing hyperthermostable cellulase machinery, biomass deconstruction can be made more efficient, leading to milder pretreatment conditions and ultimately lower production costs. The hyperthermophilic bacterium Caldicellulosiruptor bescii produces extremely active hyperthermostable cellulases, including the hyperactive multifunctional cellulase CbCel9A/Cel48A. Recombinant CbCel9A/Cel48A components have been previously produced in Escherichia coli and integrated into synthetic hyperthermophilic designer cellulosome complexes. Since then, glycosylation has been shown to be vital for the high activity and stability of CbCel9A/Cel48A. Here, we studied the impact of glycosylation on a hyperthermostable designer cellulosome system in which two of the cellulosomal components, the scaffoldin and the GH9 domain of CbCel9A/Cel48A, were glycosylated as a consequence of employing Ca. bescii as an expression host. Inclusion of the glycosylated components yielded an active cellulosome system that exhibited long-term stability at 75 °C. The resulting glycosylated designer cellulosomes showed significantly greater synergistic activity compared to the enzymatic components alone, as well as higher thermostability than the analogous nonglycosylated designer cellulosomes. These results indicate that glycosylation can be used as an essential engineering tool to improve the properties of designer cellulosomes. Additionally, Ca. bescii was shown to be an attractive candidate for production of glycosylated designer cellulosome components, which may further promote the viability of this bacterium both as a cellulase expression host and as a potential consolidated bioprocessing platform organism.


Asunto(s)
Caldicellulosiruptor/metabolismo , Celulasas/metabolismo , Celulosa/metabolismo , Celulosomas/metabolismo , Temperatura , Glicosilación , Hidrólisis
4.
Bioresour Technol ; 111: 491-5, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22366611

RESUMEN

Acetone, butanol, and ethanol (ABE) fermentation by Clostridium saccharoperbutylacetonicum N1-4 using wastewater algae biomass as a carbon source was demonstrated. Algae from the Logan City Wastewater Lagoon system grow naturally at high rates providing an abundant source of renewable algal biomass. Batch fermentations were performed with 10% algae as feedstock. Fermentation of acid/base pretreated algae produced 2.74 g/L of total ABE, as compared with 7.27 g/L from pretreated algae supplemented with 1% glucose. Additionally, 9.74 g/L of total ABE was produced when xylanase and cellulase enzymes were supplemented to the pretreated algae media. The 1% glucose supplement increased total ABE production approximately 160%, while supplementing with enzymes resulted in a 250% increase in total ABE production when compared to production from pretreated algae with no supplementation of extraneous sugar and enzymes. Additionally, supplementation of enzymes produced the highest total ABE production yield of 0.311 g/g and volumetric productivity of 0.102 g/Lh. The use of non-pretreated algae produced 0.73 g/L of total ABE. The ability to engineer novel methods to produce these high value products from an abundant and renewable feedstock such as algae could have significant implications in stimulating domestic energy economies.


Asunto(s)
Acetona/metabolismo , Butanoles/metabolismo , Etanol/metabolismo , Microalgas/metabolismo , Biomasa , Fermentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA