Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(6): 1340-1353.e14, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29195075

RESUMEN

Approximately 15 genes have been directly associated with skin pigmentation variation in humans, leading to its characterization as a relatively simple trait. However, by assembling a global survey of quantitative skin pigmentation phenotypes, we demonstrate that pigmentation is more complex than previously assumed, with genetic architecture varying by latitude. We investigate polygenicity in the KhoeSan populations indigenous to southern Africa who have considerably lighter skin than equatorial Africans. We demonstrate that skin pigmentation is highly heritable, but known pigmentation loci explain only a small fraction of the variance. Rather, baseline skin pigmentation is a complex, polygenic trait in the KhoeSan. Despite this, we identify canonical and non-canonical skin pigmentation loci, including near SLC24A5, TYRP1, SMARCA2/VLDLR, and SNX13, using a genome-wide association approach complemented by targeted resequencing. By considering diverse, under-studied African populations, we show how the architecture of skin pigmentation can vary across humans subject to different local evolutionary pressures.


Asunto(s)
Pigmentación de la Piel , África , Población Negra/genética , Humanos , Polimorfismo de Nucleótido Simple
2.
Nature ; 617(7962): 755-763, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37198480

RESUMEN

Despite broad agreement that Homo sapiens originated in Africa, considerable uncertainty surrounds specific models of divergence and migration across the continent1. Progress is hampered by a shortage of fossil and genomic data, as well as variability in previous estimates of divergence times1. Here we seek to discriminate among such models by considering linkage disequilibrium and diversity-based statistics, optimized for rapid, complex demographic inference2. We infer detailed demographic models for populations across Africa, including eastern and western representatives, and newly sequenced whole genomes from 44 Nama (Khoe-San) individuals from southern Africa. We infer a reticulated African population history in which present-day population structure dates back to Marine Isotope Stage 5. The earliest population divergence among contemporary populations occurred 120,000 to 135,000 years ago and was preceded by links between two or more weakly differentiated ancestral Homo populations connected by gene flow over hundreds of thousands of years. Such weakly structured stem models explain patterns of polymorphism that had previously been attributed to contributions from archaic hominins in Africa2-7. In contrast to models with archaic introgression, we predict that fossil remains from coexisting ancestral populations should be genetically and morphologically similar, and that only an inferred 1-4% of genetic differentiation among contemporary human populations can be attributed to genetic drift between stem populations. We show that model misspecification explains the variation in previous estimates of divergence times, and argue that studying a range of models is key to making robust inferences about deep history.


Asunto(s)
Genética de Población , Migración Humana , Filogenia , Humanos , África/etnología , Fósiles , Flujo Génico , Flujo Genético , Introgresión Genética , Genoma Humano , Historia Antigua , Migración Humana/historia , Desequilibrio de Ligamiento/genética , Polimorfismo Genético , Factores de Tiempo
3.
Am J Hum Genet ; 110(6): 927-939, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37224807

RESUMEN

Genome-wide association studies (GWASs) have identified thousands of variants for disease risk. These studies have predominantly been conducted in individuals of European ancestries, which raises questions about their transferability to individuals of other ancestries. Of particular interest are admixed populations, usually defined as populations with recent ancestry from two or more continental sources. Admixed genomes contain segments of distinct ancestries that vary in composition across individuals in the population, allowing for the same allele to induce risk for disease on different ancestral backgrounds. This mosaicism raises unique challenges for GWASs in admixed populations, such as the need to correctly adjust for population stratification. In this work we quantify the impact of differences in estimated allelic effect sizes for risk variants between ancestry backgrounds on association statistics. Specifically, while the possibility of estimated allelic effect-size heterogeneity by ancestry (HetLanc) can be modeled when performing a GWAS in admixed populations, the extent of HetLanc needed to overcome the penalty from an additional degree of freedom in the association statistic has not been thoroughly quantified. Using extensive simulations of admixed genotypes and phenotypes, we find that controlling for and conditioning effect sizes on local ancestry can reduce statistical power by up to 72%. This finding is especially pronounced in the presence of allele frequency differentiation. We replicate simulation results using 4,327 African-European admixed genomes from the UK Biobank for 12 traits to find that for most significant SNPs, HetLanc is not large enough for GWASs to benefit from modeling heterogeneity in this way.


Asunto(s)
Genética de Población , Estudio de Asociación del Genoma Completo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Frecuencia de los Genes/genética , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple/genética
4.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37146165

RESUMEN

Landscape, climate, and culture can all structure human populations, but few existing methods are designed to simultaneously disentangle among a large number of variables in explaining genetic patterns. We developed a machine learning method for identifying the variables which best explain migration rates, as measured by the coalescent-based program MAPS that uses shared identical by descent tracts to infer spatial migration across a region of interest. We applied our method to 30 human populations in eastern Africa with high-density single nucleotide polymorphism array data. The remarkable diversity of ethnicities, languages, and environments in this region offers a unique opportunity to explore the variables that shape migration and genetic structure. We explored more than 20 spatial variables relating to landscape, climate, and presence of tsetse flies. The full model explained ∼40% of the variance in migration rate over the past 56 generations. Precipitation, minimum temperature of the coldest month, and elevation were the variables with the highest impact. Among the three groups of tsetse flies, the most impactful was fusca which transmits livestock trypanosomiasis. We also tested for adaptation to high elevation among Ethiopian populations. We did not identify well-known genes related to high elevation, but we did find signatures of positive selection related to metabolism and disease. We conclude that the environment has influenced the migration and adaptation of human populations in eastern Africa; the remaining variance in structure is likely due in part to cultural or other factors not captured in our model.


Asunto(s)
Migración Humana , Modelos Genéticos , Humanos , Clima , Animales , Moscas Tse-Tse , Estudio de Asociación del Genoma Completo , África Oriental , Genética Humana , Genómica , Lenguaje
6.
Hum Mol Genet ; 30(R1): R11-R16, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33445180

RESUMEN

Although several high-resolution recombination maps exist for European-descent populations, the recombination landscape of African populations remains relatively understudied. Given that there is high genetic divergence among groups in Africa, it is possible that recombination hotspots also diverge significantly. Both limitations and opportunities exist for developing recombination maps for these populations. In this review, we discuss various recombination inference methods, and the strengths and weaknesses of these methods in analyzing recombination in African-descent populations. Furthermore, we provide a decision tree and recommendations for which inference method to use in various research contexts. Establishing an appropriate methodology for recombination rate inference in a particular study will improve the accuracy of various downstream analyses including but not limited to local ancestry inference, haplotype phasing, fine-mapping of GWAS loci and genome assemblies.


Asunto(s)
Población Negra/genética , Genómica/métodos , Recombinación Genética , África , Árboles de Decisión , Evolución Molecular , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Polimorfismo de Nucleótido Simple
8.
Nat Rev Genet ; 16(6): 333-43, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25963372

RESUMEN

Next-generation sequencing technology has facilitated the discovery of millions of genetic variants in human genomes. A sizeable fraction of these variants are predicted to be deleterious. Here, we review the pattern of deleterious alleles as ascertained in genome sequencing data sets and ask whether human populations differ in their predicted burden of deleterious alleles - a phenomenon known as mutation load. We discuss three demographic models that are predicted to affect mutation load and relate these models to the evidence (or the lack thereof) for variation in the efficacy of purifying selection in diverse human genomes. We also emphasize why accurate estimation of mutation load depends on assumptions regarding the distribution of dominance and selection coefficients - quantities that remain poorly characterized for current genomic data sets.


Asunto(s)
Genoma Humano , Efecto Fundador , Frecuencia de los Genes , Genes Dominantes , Flujo Genético , Migración Humana , Humanos , Modelos Genéticos , Mutación , Selección Genética
9.
Evol Anthropol ; 30(3): 199-220, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33951239

RESUMEN

Questions surrounding the timing, extent, and evolutionary consequences of archaic admixture into human populations have a long history in evolutionary anthropology. More recently, advances in human genetics, particularly in the field of ancient DNA, have shed new light on the question of whether or not Homo sapiens interbred with other hominin groups. By the late 1990s, published genetic work had largely concluded that archaic groups made no lasting genetic contribution to modern humans; less than a decade later, this conclusion was reversed following the successful DNA sequencing of an ancient Neanderthal. This reversal of consensus is noteworthy, but the reasoning behind it is not widely understood across all academic communities. There remains a communication gap between population geneticists and paleoanthropologists. In this review, we endeavor to bridge this gap by outlining how technological advancements, new statistical methods, and notable controversies ultimately led to the current consensus.


Asunto(s)
Evolución Biológica , ADN Antiguo/análisis , Introgresión Genética/genética , Hombre de Neandertal/genética , Animales , Antropología Física , ADN Mitocondrial/genética , Hominidae/clasificación , Hominidae/genética , Humanos , Hombre de Neandertal/clasificación
10.
J Immunol ; 202(9): 2636-2647, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30918042

RESUMEN

HLA class I and KIR sequences were determined for Dogon, Fulani, and Baka populations of western Africa, Mbuti of central Africa, and Datooga, Iraqw, and Hadza of eastern Africa. Study of 162 individuals identified 134 HLA class I alleles (41 HLA-A, 60 HLA-B, and 33 HLA-C). Common to all populations are three HLA-C alleles (C1+C*07:01, C1+C*07:02, and C2+C*06:02) but no HLA-A or -B Unexpectedly, no novel HLA class I was identified in these previously unstudied and anthropologically distinctive populations. In contrast, of 227 KIR detected, 22 are present in all seven populations and 28 are novel. A high diversity of HLA A-C-B haplotypes was observed. In six populations, most haplotypes are represented just once. But in the Hadza, a majority of haplotypes occur more than once, with 2 having high frequencies and 10 having intermediate frequencies. The centromeric (cen) part of the KIR locus exhibits an even balance between cenA and cenB in all seven populations. The telomeric (tel) part has an even balance of telA to telB in East Africa, but this changes across the continent to where telB is vestigial in West Africa. All four KIR ligands (A3/11, Bw4, C1, and C2) are present in six of the populations. HLA haplotypes of the Iraqw and Hadza encode two KIR ligands, whereas the other populations have an even balance between haplotypes encoding one and two KIR ligands. Individuals in these African populations have a mean of 6.8-8.4 different interactions between KIR and HLA class I, compared with 2.9-6.5 for non-Africans.


Asunto(s)
Población Negra , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Antígenos HLA-C/genética , Haplotipos , Receptores KIR/genética , África del Sur del Sahara , Femenino , Humanos , Masculino
11.
Proc Natl Acad Sci U S A ; 115(52): 13324-13329, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30530665

RESUMEN

Skin pigmentation is under strong directional selection in northern European and Asian populations. The indigenous KhoeSan populations of far southern Africa have lighter skin than other sub-Saharan African populations, potentially reflecting local adaptation to a region of Africa with reduced UV radiation. Here, we demonstrate that a canonical Eurasian skin pigmentation gene, SLC24A5, was introduced to southern Africa via recent migration and experienced strong adaptive evolution in the KhoeSan. To reconstruct the evolution of skin pigmentation, we collected phenotypes from over 400 ≠Khomani San and Nama individuals and high-throughput sequenced candidate pigmentation genes. The derived causal allele in SLC24A5, p.Ala111Thr, significantly lightens basal skin pigmentation in the KhoeSan and explains 8 to 15% of phenotypic variance in these populations. The frequency of this allele (33 to 53%) is far greater than expected from colonial period European gene flow; however, the most common derived haplotype is identical among European, eastern African, and KhoeSan individuals. Using four-population demographic simulations with selection, we show that the allele was introduced into the KhoeSan only 2,000 y ago via a back-to-Africa migration and then experienced a selective sweep (s = 0.04 to 0.05 in ≠Khomani and Nama). The SLC24A5 locus is both a rare example of intense, ongoing adaptation in very recent human history, as well as an adaptive gene flow at a pigmentation locus in humans.


Asunto(s)
Antiportadores/genética , Pigmentación de la Piel/genética , Adulto , África Austral , Alelos , Antiportadores/metabolismo , Pueblo Asiatico/genética , Población Negra/genética , Demografía/métodos , Evolución Molecular , Femenino , Flujo Génico , Variación Genética/genética , Genética de Población/métodos , Genotipo , Haplotipos , Humanos , Masculino , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética
12.
J Immunol ; 200(8): 2640-2655, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29549179

RESUMEN

The functions of human NK cells in defense against pathogens and placental development during reproduction are modulated by interactions of killer cell Ig-like receptors (KIRs) with HLA-A, -B and -C class I ligands. Both receptors and ligands are highly polymorphic and exhibit extensive differences between human populations. Indigenous to southern Africa are the KhoeSan, the most ancient group of modern human populations, who have highest genomic diversity worldwide. We studied two KhoeSan populations, the Nama pastoralists and the ≠Khomani San hunter-gatherers. Comprehensive next-generation sequence analysis of HLA-A, -B, and -C and all KIR genes identified 248 different KIR and 137 HLA class I, which assort into ∼200 haplotypes for each gene family. All 74 Nama and 78 ≠Khomani San studied have different genotypes. Numerous novel KIR alleles were identified, including three arising by intergenic recombination. On average, KhoeSan individuals have seven to eight pairs of interacting KIR and HLA class I ligands, the highest diversity and divergence of polymorphic NK cell receptors and ligands observed to date. In this context of high genetic diversity, both the Nama and the ≠Khomani San have an unusually conserved, centromeric KIR haplotype that has arisen to high frequency and is different in the two KhoeSan populations. Distinguishing these haplotypes are independent mutations in KIR2DL1, which both prevent KIR2DL1 from functioning as an inhibitory receptor for C2+ HLA-C. The relatively high frequency of C2+ HLA-C in the Nama and the ≠Khomani San appears to have led to natural selection against strong inhibitory C2-specific KIR.


Asunto(s)
Antígenos HLA-C/genética , Receptores KIR2DL1/genética , África Austral , Femenino , Genes MHC Clase I/genética , Haplotipos/genética , Humanos , Células Asesinas Naturales/fisiología , Ligandos , Masculino , Polimorfismo Genético/genética , Receptores KIR/genética , Receptores de Células Asesinas Naturales/genética , Selección Genética/genética
13.
PLoS Genet ; 13(3): e1006560, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28282382

RESUMEN

The human DARC (Duffy antigen receptor for chemokines) gene encodes a membrane-bound chemokine receptor crucial for the infection of red blood cells by Plasmodium vivax, a major causative agent of malaria. Of the three major allelic classes segregating in human populations, the FY*O allele has been shown to protect against P. vivax infection and is at near fixation in sub-Saharan Africa, while FY*B and FY*A are common in Europe and Asia, respectively. Due to the combination of strong geographic differentiation and association with malaria resistance, DARC is considered a canonical example of positive selection in humans. Despite this, details of the timing and mode of selection at DARC remain poorly understood. Here, we use sequencing data from over 1,000 individuals in twenty-one human populations, as well as ancient human genomes, to perform a fine-scale investigation of the evolutionary history of DARC. We estimate the time to most recent common ancestor (TMRCA) of the most common FY*O haplotype to be 42 kya (95% CI: 34-49 kya). We infer the FY*O null mutation swept to fixation in Africa from standing variation with very low initial frequency (0.1%) and a selection coefficient of 0.043 (95% CI:0.011-0.18), which is among the strongest estimated in the human genome. We estimate the TMRCA of the FY*A mutation in non-Africans to be 57 kya (95% CI: 48-65 kya) and infer that, prior to the sweep of FY*O, all three alleles were segregating in Africa, as highly diverged populations from Asia and ≠Khomani San hunter-gatherers share the same FY*A haplotypes. We test multiple models of admixture that may account for this observation and reject recent Asian or European admixture as the cause.


Asunto(s)
Resistencia a la Enfermedad/genética , Sistema del Grupo Sanguíneo Duffy/genética , Genética de Población , Malaria Vivax/genética , Receptores de Superficie Celular/genética , África , Alelos , Animales , Asia , Sistema del Grupo Sanguíneo Duffy/metabolismo , Frecuencia de los Genes , Genoma Humano , Geografía , Gorilla gorilla , Haplotipos , Humanos , Mutación , Pan paniscus , Pan troglodytes , Polimorfismo de Nucleótido Simple , Pongo , Regiones Promotoras Genéticas , Receptores de Superficie Celular/metabolismo
14.
Proc Natl Acad Sci U S A ; 113(4): E440-9, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26712023

RESUMEN

The Out-of-Africa (OOA) dispersal ∼ 50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive.


Asunto(s)
Etnicidad/genética , Genoma Humano , Migración Humana , Mutación , África del Sur del Sahara , Alelos , Animales , Pueblo Asiatico/genética , Población Negra/genética , Simulación por Computador , Secuencia Conservada , Evolución Molecular , Efecto Fundador , Flujo Génico , Enfermedades Genéticas Congénitas/genética , Flujo Genético , Genotipo , Fenómenos de Retorno al Lugar Habitual , Humanos , Indígenas Centroamericanos/genética , Modelos Genéticos , Selección Genética
15.
PLoS Genet ; 11(8): e1005439, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26292085

RESUMEN

Modulating natural killer cell functions in human immunity and reproduction are diverse interactions between the killer cell immunoglobulin-like receptors (KIR) of Natural Killer (NK) cells and HLA class I ligands on the surface of tissue cells. Dominant interactions are between KIR2DL1 and the C2 epitope of HLA-C and between KIR2DL2/3 and the C1 epitope of HLA-C. KhoeSan hunter-gatherers of Southern Africa represent the earliest population divergence known and are the most genetically diverse indigenous people, qualities reflected in their KIR and HLA genes. Of the ten KhoeSan KIR2DL1 alleles, KIR2DL1*022 and KIR2DL1*026 likely originated in the KhoeSan, and later were transmitted at low frequency to the neighboring Zulus through gene flow. These alleles arose by point mutation from other KhoeSan KIR2DL1 alleles that are more widespread globally. Mutation of KIR2DL1*001 gave rise to KIR2DL1*022, causing loss of C2 recognition and gain of C1 recognition. This makes KIR2DL1*022 a more avid and specific C1 receptor than any KIR2DL2/3 allotype. Mutation of KIR2DL1*012 gave rise to KIR2DL1*026, causing premature termination of translation at the end of the transmembrane domain. This makes KIR2DL1*026 a membrane-associated receptor that lacks both a cytoplasmic tail and signaling function. At higher frequencies than their parental allotypes, the combined effect of the KhoeSan-specific KIR2DL1*022 and KIR2DL1*026 is to reduce the frequency of strong inhibitory C2 receptors and increase the frequency of strong inhibitory C1 receptors. Because interaction of KIR2DL1 with C2 is associated with risk of pregnancy disorder, these functional changes are potentially advantageous. Whereas all other KhoeSan KIR2DL1 alleles are present on a wide diversity of centromeric KIR haplotypes, KIR2DL1*026 is present on a single KIR haplotype and KIR2DL1*022 is present on two very similar haplotypes. The high linkage disequilibrium across their haplotypes is consistent with a recent emergence for these KIR2DL1 alleles that have distinctive functions.


Asunto(s)
Receptores KIR2DL1/genética , Alelos , Evolución Molecular , Estudios de Asociación Genética , Genética Médica , Haplotipos , Células HeLa , Humanos , Células Asesinas Naturales/inmunología , Desequilibrio de Ligamiento , Polimorfismo Genético , Receptores KIR2DL1/metabolismo , Transducción de Señal , Sudáfrica
16.
Mol Genet Genomics ; 292(3): 499-509, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28229227

RESUMEN

The KhoeSan populations are the earliest known indigenous inhabitants of southern Africa. The relatively recent expansion of Bantu-speaking agropastoralists, as well as European colonial settlement along the south-west coast, dramatically changed patterns of genetic diversity in a region which had been largely isolated for thousands of years. Owing to this unique history, population structure in southern Africa reflects both the underlying KhoeSan genetic diversity as well as differential recent admixture. This population structure has a wide range of biomedical and sociocultural implications; such as changes in disease risk profiles. Here, we consolidate information from various population genetic studies that characterize admixture patterns in southern Africa with an aim to better understand differences in adverse disease phenotypes observed among groups. Our review confirms that ancestry has a direct impact on an individual's immune response to infectious diseases. In addition, we emphasize the importance of collaborative research, especially for populations in southern Africa that have a high incidence of potentially fatal infectious diseases such as HIV and tuberculosis.


Asunto(s)
Etnicidad/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Genética de Población , África Austral , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Humanos , Población Blanca/genética
17.
PLoS Genet ; 10(8): e1004549, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25121757

RESUMEN

Large-scale sequencing efforts have documented extensive genetic variation within the human genome. However, our understanding of the origins, global distribution, and functional consequences of this variation is far from complete. While regulatory variation influencing gene expression has been studied within a handful of populations, the breadth of transcriptome differences across diverse human populations has not been systematically analyzed. To better understand the spectrum of gene expression variation, alternative splicing, and the population genetics of regulatory variation in humans, we have sequenced the genomes, exomes, and transcriptomes of EBV transformed lymphoblastoid cell lines derived from 45 individuals in the Human Genome Diversity Panel (HGDP). The populations sampled span the geographic breadth of human migration history and include Namibian San, Mbuti Pygmies of the Democratic Republic of Congo, Algerian Mozabites, Pathan of Pakistan, Cambodians of East Asia, Yakut of Siberia, and Mayans of Mexico. We discover that approximately 25.0% of the variation in gene expression found amongst individuals can be attributed to population differences. However, we find few genes that are systematically differentially expressed among populations. Of this population-specific variation, 75.5% is due to expression rather than splicing variability, and we find few genes with strong evidence for differential splicing across populations. Allelic expression analyses indicate that previously mapped common regulatory variants identified in eight populations from the International Haplotype Map Phase 3 project have similar effects in our seven sampled HGDP populations, suggesting that the cellular effects of common variants are shared across diverse populations. Together, these results provide a resource for studies analyzing functional differences across populations by estimating the degree of shared gene expression, alternative splicing, and regulatory genetics across populations from the broadest points of human migration history yet sampled.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Genética de Población , Haplotipos/genética , Genoma Humano , Proyecto Mapa de Haplotipos , Proyecto Genoma Humano , Migración Humana , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética
18.
PLoS Genet ; 10(5): e1004353, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24809476

RESUMEN

Genome sequencing of the 5,300-year-old mummy of the Tyrolean Iceman, found in 1991 on a glacier near the border of Italy and Austria, has yielded new insights into his origin and relationship to modern European populations. A key finding of that study was an apparent recent common ancestry with individuals from Sardinia, based largely on the Y chromosome haplogroup and common autosomal SNP variation. Here, we compiled and analyzed genomic datasets from both modern and ancient Europeans, including genome sequence data from over 400 Sardinians and two ancient Thracians from Bulgaria, to investigate this result in greater detail and determine its implications for the genetic structure of Neolithic Europe. Using whole-genome sequencing data, we confirm that the Iceman is, indeed, most closely related to Sardinians. Furthermore, we show that this relationship extends to other individuals from cultural contexts associated with the spread of agriculture during the Neolithic transition, in contrast to individuals from a hunter-gatherer context. We hypothesize that this genetic affinity of ancient samples from different parts of Europe with Sardinians represents a common genetic component that was geographically widespread across Europe during the Neolithic, likely related to migrations and population expansions associated with the spread of agriculture.


Asunto(s)
Fósiles , Genética de Población , Genoma Humano , Europa (Continente) , Femenino , Humanos , Polimorfismo de Nucleótido Simple
19.
Proc Natl Acad Sci U S A ; 110(29): 11791-6, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23733930

RESUMEN

Human genetic diversity in southern Europe is higher than in other regions of the continent. This difference has been attributed to postglacial expansions, the demic diffusion of agriculture from the Near East, and gene flow from Africa. Using SNP data from 2,099 individuals in 43 populations, we show that estimates of recent shared ancestry between Europe and Africa are substantially increased when gene flow from North Africans, rather than Sub-Saharan Africans, is considered. The gradient of North African ancestry accounts for previous observations of low levels of sharing with Sub-Saharan Africa and is independent of recent gene flow from the Near East. The source of genetic diversity in southern Europe has important biomedical implications; we find that most disease risk alleles from genome-wide association studies follow expected patterns of divergence between Europe and North Africa, with the principal exception of multiple sclerosis.


Asunto(s)
Flujo Génico/genética , Variación Genética , Genética de Población , Población Blanca/genética , Población Blanca/historia , África del Norte , Demografía , Europa (Continente) , Haplotipos/genética , Historia Antigua , Humanos , Polimorfismo de Nucleótido Simple/genética
20.
Proc Natl Acad Sci U S A ; 109(44): 17758-64, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23077256

RESUMEN

Genetic and paleoanthropological evidence is in accord that today's human population is the result of a great demic (demographic and geographic) expansion that began approximately 45,000 to 60,000 y ago in Africa and rapidly resulted in human occupation of almost all of the Earth's habitable regions. Genomic data from contemporary humans suggest that this expansion was accompanied by a continuous loss of genetic diversity, a result of what is called the "serial founder effect." In addition to genomic data, the serial founder effect model is now supported by the genetics of human parasites, morphology, and linguistics. This particular population history gave rise to the two defining features of genetic variation in humans: genomes from the substructured populations of Africa retain an exceptional number of unique variants, and there is a dramatic reduction in genetic diversity within populations living outside of Africa. These two patterns are relevant for medical genetic studies mapping genotypes to phenotypes and for inferring the power of natural selection in human history. It should be appreciated that the initial expansion and subsequent serial founder effect were determined by demographic and sociocultural factors associated with hunter-gatherer populations. How do we reconcile this major demic expansion with the population stability that followed for thousands years until the inventions of agriculture? We review advances in understanding the genetic diversity within Africa and the great human expansion out of Africa and offer hypotheses that can help to establish a more synthetic view of modern human evolution.


Asunto(s)
Genoma Humano , Crecimiento Demográfico , África , Demografía , Efecto Fundador , Migración Humana , Humanos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA