Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Chemistry ; 30(5): e202302766, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37929885

RESUMEN

The bicyclic silicon(I) ring compound Si4 {N(SiMe3 )Mes}4 (2) was used as starting material in reactions with chalcogens and chalcogen transfer agents at low temperatures. This resulted in the selective formation of new cage compounds. With Me3 NO, a silicon oxide with adamantane-type cage 3 was isolated that represents the first isolated T4 silsesquioxane. Reactions with propylenesulfide and red selenium gave direct access to defect heterocubane-type cages 4 and 5 with three Si-Si bonds wherein the silicon atoms adopt different low oxidation states of +I and +III. A reaction with elemental tellurium even occurs below room temperature to provide ditelluro-tetrasila-tricyclohexane 6.

2.
Inorg Chem ; 63(9): 4132-4151, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38382545

RESUMEN

In this work, we have explored Re(I) complexes featuring triphenylpnictogen (PnPh3, Pn = P, As, or Sb)-based coligands and bidentate (neutral or monoanionic) luminophores derived from 1,10-phenantroline (phen), as well as from 2-(3-(tert-butyl)-1H-1,2,4-triazol-5-yl)pyridine (H(N-tBu)). The effect of the increasingly heavy elements on the structural parameters, photoexcited-state properties, and electrochemical behavior as well as the hybridization defects and polarization of the Pn atoms was related to the charges of the main luminophores (i.e., phen vs N-tBu) and explored in terms of photoluminescence spectroscopy, X-ray diffractometry, and quantum-chemical methods. Therefore, an in-depth analysis of the bonding, crystal packing, excited-state energies, and lifetimes was assessed in liquid solutions, frozen glassy matrices, and crystalline phases along with a semiquantitative photoactivation study. Notably, by changing the main ligand from phen to N-tBu, an increase in radiative and radiationless deactivation rates (kr and knr, respectively) at 77 K together with a faster photoinduced CO release and fragmentation at room temperature was detected. In addition, a progressively red-shifted phosphorescence was observed with the growing atomic number of the pnictogen atom, along with a boost in kr and knr at 77 K. Down the Vth main group and upon coordination of the Pn atom to the Re(I) center, an increasingly prominent jump of s-orbital participation on the binding sxp3.00-orbitals of the Pn atoms is evidenced. Based on these findings, the ability of these complexes to act as tunable photoluminescent labels able to perform as light-driven CO-releasing molecules is envisioned.

3.
Inorg Chem ; 63(22): 10114-10126, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38780307

RESUMEN

In this study, it is demonstrated that the radiative rate constant of phosphorescent metal complexes can be substantially enhanced using monodentate ancillary ligands containing heavy donor atoms. Thus, the chlorido coligand from a Pt(II) complex bearing a monoanionic tridentate C^N*N luminophore ([PtLCl]) was replaced by triphenylphosphane (PPh3) and its heavier pnictogen congeners (i.e., PnPh3 to yield [PtL(PnPh3)]). Due to the high tridentate-ligand-centered character of the excited states, the P-related radiative rate is rather low while showing a significant boost upon replacement of the P donor by heavier As- and Sb-based units. The syntheses of the three complexes containing PPh3, AsPh3, and SbPh3 were completed by unambiguous characterization of the clean products using exact mass spectrometry, X-ray diffractometry, bidimensional NMR, and 121Sb-Mössbauer spectroscopy (for [PtL(SbPh3)]) as well as steady state and time-resolved photoluminescence spectroscopies. Hence, it was shown that the hybridization defects of the Vth main-group atoms can be overcome by complexation with the Pt center. Notably, the enhancement of the radiative rate constants mediated by heavier coligands was achieved without significantly influencing the character of the excited states. A rationalization of the results was achieved by TD-DFT. Even though the Bi-based homologue was not accessible due to phenylation side reactions, the experimental data allowed a reasonable extrapolation of the structural features whereas the hybridization defects and the excited state properties related to the Bi-species and its phosphorescence rate can be predicted by theory. The three complexes showed an interesting antiprotozoal activity, which was unexpectedly notorious for the P-containing complex. This work could pave the road toward new efficient materials for optoelectronics and novel antiparasitic drugs.

4.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473852

RESUMEN

Metal phthalocyaninates and their higher homologues are recognized as deep-red luminophores emitting from their lowest excited singlet state. Herein, we report on the design, synthesis, and in-depth characterization of a new class of dual-emissive (visible and NIR) metal naphthalocyaninates. A 4-N,N-dimethylaminophen-4-yl-substituted naphthalocyaninato zinc(II) complex (Zn-NMe2Nc) and the derived water-soluble coordination compound (Zn-NMe3Nc) exhibit a near-infrared fluorescence from the lowest ligand-centered state, along with a unique push-pull-supported luminescence in the visible region of the electromagnetic spectrum. An unprecedentedly broad structural (2D-NMR spectroscopy and mass spectrometry) as well as photophysical characterization (steady-state state and time-resolved photoluminescence spectroscopy) is presented. The unique dual emission was assigned to two independent sets of singlet states related to the intrinsic Q-band of the macrocycle and to the push-pull substituents in the molecular periphery, respectively, as predicted by TD-DFT calculations. In general, the elusive chemical aspects of these macrocyclic compounds are addressed, involving both reaction conditions, thorough purification, and in-depth characterization. Besides the fundamental aspects that are investigated herein, the photoacoustic properties were exemplarily examined using phantom gels to assess their tomographic imaging capabilities. Finally, the robust luminescence in the visible range arising from the push-pull character of the peripheral moieties demonstrated a notable independence from aggregation and was exemplarily implemented for optical imaging (FLIM) through time-resolved multiphoton micro(spectro)scopy.


Asunto(s)
Luminiscencia , Agua , Análisis Espectral , Agua/química , Teoría Funcional de la Densidad , Zinc/química
5.
J Am Chem Soc ; 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36780431

RESUMEN

The synthesis as well as the structural and photophysical characterization of two isoleptic bis-cyclometalated Pt(II) and Pd(II) complexes, namely [PtL] and [PdL], bearing a tailored dianionic tetradentate ligand (L2-) are reported. The isostructural character and intermolecular interactions of [PtL] and [PdL] were assessed by NMR spectroscopy and X-ray diffraction analysis. Both complexes show fully ligand-controlled aggregation, demonstrating that a judicious molecular design can tune the photophysical properties. In fact, by introduction of fluorine atoms on defined positions and methoxy groups on complementary sites, metal-metal interactions can be forced by a head-to-tail stacking. Hence, [PtL] shows luminescence from metal-perturbed ligand-centered or from metal-metal-to-ligand charge-transfer triplet states in diluted solutions, in frozen glasses and in crystals, with high photoluminescence quantum yields and long lifetimes in the microsecond range. At room temperature (RT) in concentrated fluid solutions, the palladium analogue [PdL] surprisingly emits luminescence from aggregated species involving supramolecular interactions. Time-resolved photoluminescence and transient absorption spectroscopies demonstrated that ultrafast intersystem crossing occurs for both metals, which outruns any competitive relaxation pathway from the photoexcited singlet state. Furthermore, we demonstrate that the radiationless deactivation can be suppressed in frozen glassy matrices at 77 K and by intermolecular interactions in fluid solutions at RT. In both cases and as indicated by density functional theory calculations, the lowest emissive state acts as an energy trap from which the thermal population of dissociative states with formal occupation of an antibonding Pd-centered 4dx2-y2 orbital is suppressed. This occurs as the energy gap between the emissive and the dark states surpasses kT.

6.
Molecules ; 28(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067570

RESUMEN

In this study, the insertion of different monodentate co-ligands on Pt(II) complexes bearing a monoanionic C^N*N luminophore as a tridentate chelator was achieved beyond the previously reported chlorido- ([PtCl(L)]) and cyanido-decorated ([PtCN(L)]) analogues. To investigate the impact of the auxiliary ligand on the photophysical properties, we introduced a neutral carbonyl-ligand and observed a lower photoluminescence quantum yield (ΦL) than with a cyanido moiety. However, the direct substitution of the chlorido co-ligand by a NO-related derivative was not successful. Interestingly, the attempted reduction of the successfully inserted nitrito-N-ligand in [PtNO2(L)] resulted in the oxidation of the Pt(II)-center to Pt(IV), as demonstrated by X-ray diffractometry. For comparison, the trifluoroacetato Pt(II) and chlorido Pt(IV) complexes ([PtTFA(L)] and [PtCl3(L)], respectively) were also synthesized. The photophysical characterization revealed similar photoluminescence profiles for all complexes, indicating a weak effect of the co-ligand on the excited state; in fact, all complexes display emission from metal-perturbed ligand-centered states (even the Pt(IV) species). Nonetheless, longer excited state lifetimes (τav) suggest a reduced thermally-activated radiationless deactivation via metal-centered states upon exchange of the chlorido units for other monodentate entities, yet without significantly improving the overall ΦL at room temperature. The irreversible oxidation waves (measured via cyclic voltammetry) mostly stem from the Pt(II)-center; the co-ligand-related drop of these potentials correlates with the increasing σ-donating capacities of the ancillary ligand. In summary, an enhanced π-acceptor capacity does not necessarily improve the ΦL and can even impair radiative rates by compromising the perturbative participation of the metal center on the emissive triplet state; in addition, strong σ-donor abilities improve the phosphorescence efficiencies by hampering the thermal population of dissociative electronic configurations related to the participation of antibonding d*-orbitals at the metal center.

7.
Molecules ; 28(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37959770

RESUMEN

A series of four regioisomeric Pt(II) complexes (PtLa-n and PtLb-n) bearing tetradentate luminophores as dianionic ligands were synthesized. Hence, both classes of cyclometallating chelators were decorated with three n-hexyl (n = 6) or n-dodecyl (n = 12) chains. The new compounds were unambiguously characterized by means of multiple NMR spectroscopies and mass spectrometry. Steady-state and time-resolved photoluminescence spectroscopy as well quantum chemical calculations show that the effect of the regioisomerism on the emission colour and on the deactivation rate constants can be correlated with the participation of the Pt atom on the excited state. The thermal properties of the complexes were studied by DSC, POM and temperature-dependent steady-state photoluminescence spectroscopy. Three of the four complexes (PtLa-12, PtLb-6 and PtLb-12) present an intriguing thermochromism resulting from the responsive metal-metal interactions involving adjacent monomeric units. Each material has different transition temperatures and memory capabilities, which can be tuned at the intermolecular level. Hence, dipole-dipole interactions between the luminophores and disruption of the crystalline packing by the alkyl groups are responsible for the final properties of the resulting materials.

8.
Angew Chem Int Ed Engl ; 62(11): e202217681, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36629746

RESUMEN

We report herein a series of organometallic Borromean rings (BRs) and [2]catenanes prepared from benzobiscarbene ligands. The reaction of dinickel complexes of the benzobiscarbenes 1 a-1 c with a thiazolothiazole bridged bipyridyl ligand L2 led by self-assembly to a series of organometallic BRs. Solvophobic effects played a crucial role in the formation and stability of the interlocked species. The stability of BRs is related to the N-alkyl substituents at the precursors 1 a-1 c, where longer alkyl substitutes improve stability and inter-ring interactions. Solvophobic effects are also important for the stability of [2]catenanes prepared from 1 a-1 c and a flexible bipyridyl ligand L3 . In solution, an equilibrium between the [2]catenanes and their macrocyclic building blocks was observed. High proportions of [2]catenanes were obtained in concentrated solutions or polar solvents. The proportion of [2]catenanes in solution could be further enhanced by lengthening of the N-alkyl substitutes.

9.
Angew Chem Int Ed Engl ; 62(50): e202312323, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37819869

RESUMEN

A series of [2]catenanes has been prepared from di-NHC building blocks by utilizing solvophobic effects and/or π⋅⋅⋅π stacking interactions. The dinickel naphthobiscarbene complex syn-[1] and the kinked biphenyl-bridged bipyridyl ligand L2 yield the [2]catenane [2-IL](OTf)4 by self-assembly. Solvophobic effects are pivotal for the formation of the interlocked species. Substitution of the biphenyl-linker in L2 for a pyromellitic diimide group gave ligand L3 , which yielded in combination with syn-[1] the [2]catenane [3-IL](OTf)4 . This assembly exhibits enhanced stability in diluted solution, aided by additional π⋅⋅⋅π stacking interactions. The π⋅⋅⋅π stacking was augmented by the introduction of a pyrene bridge between two NHC donors in ligand L4 . Di-NHC precursor H2 -L4 (PF6 )2 reacts with Ag2 O to give the [Ag2 L4 2 ]2 [2]catenane [4-IL](PF6 )4 , which shows strong π⋅⋅⋅π stacking interactions between the pyrene groups. This assembly was readily converted into the [Au2 L4 2 ]2 gold species [5-IL](PF6 )4 , which exhibits exceptional stability based on the strong π⋅⋅⋅π stacking interactions and the enhanced stability of the Au-CNHC bonds.

10.
Chemistry ; 28(45): e202201473, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35652723

RESUMEN

The silanide [Si4 {N(SiMe3 )Dipp}3 ]- (1) transforms into the anionic siliconoid cluster [Si7 {N(SiMe3 )Dipp}3 ]- (2) with four unsubstituted silicon atoms as a contact ion pair with [K([18]crown-6)] in C6 D6 at room temperature within five weeks. Anion 2 was investigated by natural population analysis and visualization of intrinsic atomic orbitals. Magnetically induced current-density calculations of 2 revealed two distinct strong diatropic vortices that sum up in one direction and create a strongly shielded apical silicon atom in 2.

11.
Inorg Chem ; 61(35): 13775-13791, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35998339

RESUMEN

In this work, we describe the synthesis as well as structural, photophysical, and theoretical investigation of a new coordination chemical concept involving rhenium(I) complexes bearing monoanionic 1,2,4-triazolylpyridine-based bidentate chromophores. The X-ray diffractometric analysis of single crystals revealed particular packing features: the trifluoromethylated exemplar displayed two kinds of arrangements of the coordination centers, where the bidentate ligands at the edges of the unit cell are staggered parallel to each other, whereas those inside show antiparallel stacking with respect to the external ligands. On the other hand, the complexes bearing an adamantyl substituent yield a linear arrangement, where the bulky moiety of one luminophore points to the pyridine center of the adjacent ligand of the neighboring complex while including methanol molecules hydrogen-bonded to the triazolato unit. We observed that the photophysical properties of the complexes (photoexcited-state lifetimes, photoluminescence maxima and quantum yields) can be adjusted by tuning of the substitution pattern at the bidentate luminophore as well as by variation of the monodentate coligand. The photoluminescence spectra and photoexcited-state lifetimes of the crystalline phases were measured by phosphorescence lifetime micro(spectro)scopy. Interestingly, the vibrationally resolved emission spectra of the crystals closely resemble those of diluted frozen glassy matrixes at 77 K, in contrast with the broad bands observed in amorphous solids and in fluid solutions, where the charge-transfer character is enhanced. While the photoluminescence quantum yields (ΦL) reach up to 15%, the complexes are able to attain up to 55% efficiency regarding the photosensitization of 1O2 (ΦΔ), depending on the combination of luminophore and coligand. Theoretical calculations showed that the photoexcited triplet (T1) state has a metal-ligand-to-ligand charge-transfer character, where promotion to the excited electronic configuration shortens the Re(I)-N bond involving the bidentate triazolylpyridine while stretching the three fac-CO-Re(I) bonds as well as the linkage to the axial monodentate coligand. The calculated vertical (Evl) and 0-0 (E(0-0)) radiative transition energies are in very good agreement with the experimental values (Eexplum).

12.
Inorg Chem ; 61(24): 9195-9204, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35666659

RESUMEN

A family of Pt(II) complexes bearing monoanionic C^N^N ligands as luminophoric units as well as a set of monodentate ligands derived from allenylidene and carbene species were synthesized and characterized in terms of structure and photophysical properties. In addition, we present the extraordinary molecular structure of a phosphorescent complex carrying an allenylidene ligand. Depending on the co-ligand, an effect can be observed in the photoluminescence lifetimes and quantum yields as well as in the radiative and radiation less deactivation rate constants. Their correlation with the substitution pattern was analyzed by comparing the photoluminescence in fluid solution at room temperature and in frozen glassy matrices at 77 K. Moreover, in order to gain a deeper understanding of the electronic states responsible for the optical properties, density functional theory calculations were performed. Finally, the cytotoxicity of the complexes was evaluated in vitro, showing that the cationic complexes exhibit strong effects at low micromolar concentrations. The calculated half-maximum effective concentrations (EC50 values) were 4 times lower in comparison to the established antitumor agent oxaliplatin. In contrast, the neutral species are less toxic, rendering them as potential bioimaging agents.


Asunto(s)
Antineoplásicos , Carbono/química , Platino (Metal)/química , Teoría Cuántica , Antineoplásicos/química , Antineoplásicos/farmacología , Ligandos , Luminiscencia , Estructura Molecular
13.
Angew Chem Int Ed Engl ; 61(5): e202114485, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34797603

RESUMEN

Isolation of the neutral homocyclic silylene 2 is possible via amine ligand abstraction with potassium graphite (KC8 ) and subsequent reaction with SiMe3 Cl from a bicyclic silicon(I) amide J. This reaction proceeds via an anionic homoaromatic silicon ring compound 1 as an intermediate. The twofold-coordinated silicon atom in the homocyclic silylene 2 is stabilized by an allyl-type π-electron delocalization. 2 reacts in an oxidative addition with two equivalents of MeOH and in cycloadditions with ethene, phenylacetylene, diphenylacetylene and with 2,3-dimethyl-1,3-butadiene to afford novel functionalized ring compounds.

14.
Chemistry ; 27(69): 17361-17368, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34636454

RESUMEN

The bicyclic amido-substituted silicon(I) ring compound Si4 {N(SiMe3 )Mes}4 2 (Mes=Mesityl=2,4,6-Me3 C6 H2 ) features enhanced zwitterionic character and different reactivity from the analogous compound Si4 {N(SiMe3 )Dipp}4 1 (Dipp=2,6-i Pr2 C6 H3 ) due to the smaller mesityl substituents. In a reaction with the N-heterocyclic carbene NHC Me 4 (1,3,4,5-tetramethyl-imidazol-2-ylidene), we observe adduct formation to give Si4 {N(SiMe3 )Mes}4 ⋅ NHC Me 4 (3). This adduct reacts further with the Lewis acid BH3 to yield the Lewis acid-base complex Si4 {N(SiMe3 )Mes}4 ⋅ NHC Me 4 ⋅ BH3 (4). Coordination of AlBr3 to 2 leads to the adduct 5. Calculated proton affinities and fluoride ion affinities reveal highly Lewis basic and very weak Lewis acidic character of the low-valent silicon atoms in 1 and 2. This is confirmed by protonation of 1 and 2 with Brookharts acid yielding 6 and 7. Reaction with diphenylacetylene only occurs at 111 °C with 2 in toluene and is accompanied by fragmentation of 2 to afford the silacyclopropene 8 and the trisilanorbornadiene species 9.

15.
Angew Chem Int Ed Engl ; 60(40): 21761-21766, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34255419

RESUMEN

Reductive debromination of {N(SiMe3 )2 }SiBr3 with Rieke magnesium results in the formation of the five-vertex silicon cluster with one bromine substituent Si5 {N(SiMe3 )2 }5 Br, 1, and the cyclobutadiene analogue 2 in a 1:1 ratio. The latter features a planar four-membered silicon ring with a charge-separated electronic situation. Two silicon atoms in 2 are trigonal planar and the other two trigonal pyramidal. In cycloadditions with ethylene, diethylacetylene, 1,5-cyclooctadiene, and 2,3-dimethyl-1,3-butadiene cyclic unsaturated ring compounds (3-6) were formed at room temperature in quantitative reactions. Two of the products (3 and 6) show photochemical isomerization with LED light (λ=405 nm) to afford saturated ring compounds 4 e and 6'.

16.
Angew Chem Int Ed Engl ; 60(5): 2599-2602, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33022849

RESUMEN

CAAC precursors 2-chloro-3,3-dimethylindole 1 and 2-chloro-1-ethyl-3,3-dimethylindolium tetrafluoroborate 2BF4 have been prepared and oxidatively added to [M(PPh3 )4 ] (M=Pd, Pt). Salt 2BF4 reacts with [Pd(PPh3 )4 ] in toluene at 25 °C over 4 days to yield complex cis-[3]BF4 featuring an N-ethyl substituted CAAC, two cis-arranged phosphines and a chloro ligand. Compound trans-[3]BF4 was obtained from the same reaction at 80 °C over 1 day. Salt 2BF4 reacts with [Pt(PPh3 )4 ] to give cis-[4]BF4 . The neutral indole derivative 1 adds oxidatively to [Pt(PPh3 )4 ] to give trans-[5] featuring a CAAC ligand with an unsubstituted ring-nitrogen atom. This nitrogen atom has been protonated with py⋅HBF4 to give trans-[6]BF4 bearing a protic CAAC ligand. The PdII complex trans-[7]BF4 bearing a protic CAAC ligand was obtained in a one-pot reaction from 1 and [Pd(PPh3 )4 ] in the presence of py⋅HBF4 .

17.
Chemistry ; 26(68): 15977-15988, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-32618025

RESUMEN

3H-Phosphaallenes, R-P=C=C(H)C-R' (3), are accessible in a multigram scale on a new and facile route and show a fascinating chemical reactivity. BH3 (SMe2 ) and 3 a (R=Mes*, R'=tBu) afforded by hydroboration of the C=C bonds of two phosphaallene molecules an unprecedented borane (7) with the B atom bound to two P=C double bonds. This compound represents a new FLP based on a B and two P atoms. The increased Lewis acidity of the B atom led to a different reaction course upon treatment of 3 a with H2 B-C6 F5 (SMe2 ). Hydroboration of a C=C bond of a first phosphaallene is followed in a typical FLP reaction by the coordination of a second phosphaallene molecule via B-C and P-B bond formation to yield a BP2 C2 heterocycle (8). Its B-P bond is short and the B-bound P atom has a planar surrounding. Treatment of 3 a with tBuLi resulted in deprotonation of the ß-C atom of the phosphaallene (9). The Li atom is bound to the P atom as demonstrated by crystal structure determination, quantum chemical calculations and reactions with HCl, Cl-SiMe3 or Cl-PtBu2 . The thermally unstable phosphaallene Ph-P=C=C(H)-tBu gave a unique trimeric secondary product by P-P, P-C and C-C bond formation. It contains a P2 C4 heterocycle and was isolated as a W(CO)4 complex with two P atoms coordinated to W (15).

18.
Chemistry ; 26(50): 11565-11570, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32237240

RESUMEN

The tetrakisimidazolium salt H4 -2(Br)4 , featuring a central benzene linker and 1,2,4,5-(nBu-imidazolium-Ph-CH=CH-) substituents reacts with Ag2 O in the presence of AgBF4 to yield the tetranuclear, oktakis-NHC assembly [3](BF4 )4 . Cation [3]4+ features four pairs of olefins from the two tetrakis-NHC ligands perfectly arranged for a subsequent [2+2] cycloaddition. Irradiation of [3](BF4 )4 with a high pressure Hg lamp connects the two tetra-NHC ligands through four cyclobutane linkers to give compound [4](BF4 )4 . Removal of the template metals yields the novel oktakisimidazolium salt H8 -5(BF4 )8 . The tetrakisimidazolium salt H4 -2(BF4 )4 and the oktakisimidazolium salt H8 -5(BF4 )8 have been used as multivalent anion receptors and their anion binding properties towards six different anions have been compared.

19.
J Org Chem ; 85(22): 14315-14332, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32022561

RESUMEN

3H-Phosphaallenes are accessible on a new and facile route and show a fascinating chemical behavior. The thermally induced rearrangement of Mes*P═C═C(H)R' (R' = tBu, Ad) afforded by C-H activation, isobutene elimination, and C-C and P-H bond formation bicyclic 1-benzo-dihydrophosphetes (2) with PC3 heterocycles. DFT calculations suggest a mechanism with intramolecular nucleophilic aromatic substitution and replacement of an alkyl group by the nucleophilic α-C atom of the phosphaallene. These bicycles formed W(CO)5 complexes (3) or afforded 1,2-dihydrophosphetes with P-bound alkenyl groups by catalyst-free hydrophosphination of alkynes (4 and 5). The resulting bulky phosphines formed complexes with IrCp*Cl2, RuCl2, AuCl, or CuO3SCF3. The Ru atom is coordinated by the P atom and a phenyl group. Irradiation of TripP═C═C(H)tBu led by the insertion of the central C atom of the P═C═C group into the α-C-H bond of an iPr substituent and by C-C and P-C bond formation to a new isomer of phosphaallenes, 10, which features a strained PC2 heterocycle. It formed adducts with M(CO)5 (M = Cr, Mo, W) and AuCl and reacted with SO2Cl2 by cleavage of one of the phosphirane P-C bonds to yield PC4 or PC5 heterocycles. Hydrolysis yielded a PC5 compound with a P(O)Cl group.

20.
Inorg Chem ; 59(8): 5558-5563, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32233410

RESUMEN

The trilithium compound 1,3-[PhMe2Si-C(Li)═C(H)]2C6H3Li (2b) reacted with BCl3, AlCl3, or GaCl3 by salt elimination to yield dinuclear heptacyclic compounds (4). Two tridentate tricarbanionic ligands coordinate two B, Al, or Ga atoms and adopt a helical arrangement of the ligands around a central E2 unit. The unusual structures comprise E2C2 heterocycles with two 3c-2e (three-center-two-electron) E-C-E bonds and two C atoms of aromatic rings in the bridging positions. While such a bonding situation is well-documented in Al chemistry, it is rare for B and Ga compounds. Insight into the bonding situation of the molecules is provided by DFT calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA