Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Hepatol ; 77(1): 15-28, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35167910

RESUMEN

BACKGROUND & AIMS: The pathogenesis of liver fibrosis requires activation of hepatic stellate cells (HSCs); once activated, HSCs lose intracellular fatty acids but the role of fatty acid oxidation and carnitine palmitoyltransferase 1A (CPT1A) in this process remains largely unexplored. METHODS: CPT1A was found in HSCs of patients with fibrosis. Pharmacological and genetic manipulation of CPT1A were performed in human HSC cell lines and primary HCSs. Finally, we induced fibrosis in mice lacking CPT1A specifically in HSCs. RESULTS: Herein, we show that CPT1A expression is elevated in HSCs of patients with non-alcoholic steatohepatitis, showing a positive correlation with the fibrosis score. This was corroborated in rodents with fibrosis, as well as in primary human HSCs and LX-2 cells activated by transforming growth factor ß1 (TGFß1) and fetal bovine serum (FBS). Furthermore, both pharmacological and genetic silencing of CPT1A prevent TGFß1- and FBS-induced HSC activation by reducing mitochondrial activity. The overexpression of CPT1A, induced by saturated fatty acids and reactive oxygen species, triggers mitochondrial activity and the expression of fibrogenic markers. Finally, mice lacking CPT1A specifically in HSCs are protected against fibrosis induced by a choline-deficient high-fat diet, a methionine- and choline-deficient diet, or treatment with carbon tetrachloride. CONCLUSIONS: These results indicate that CPT1A plays a critical role in the activation of HSCs and is implicated in the development of liver fibrosis, making it a potentially actionable target for fibrosis treatment. LAY SUMMARY: We show that the enzyme carnitine palmitoyltransferase 1A (CPT1A) is elevated in hepatic stellate cells (HSCs) in patients with fibrosis and mouse models of fibrosis, and that CPT1A induces the activation of these cells. Inhibition of CPT1A ameliorates fibrosis by preventing the activation of HSCs.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Células Estrelladas Hepáticas , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Colina , Ácidos Grasos/metabolismo , Fibrosis , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/prevención & control , Ratones
2.
PLoS Biol ; 17(11): e3000532, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31697675

RESUMEN

Mkrn3, the maternally imprinted gene encoding the makorin RING-finger protein-3, has recently emerged as putative pubertal repressor, as evidenced by central precocity caused by MKRN3 mutations in humans; yet, the molecular underpinnings of this key regulatory action remain largely unexplored. We report herein that the microRNA, miR-30, with three binding sites in a highly conserved region of its 3' UTR, operates as repressor of Mkrn3 to control pubertal onset. Hypothalamic miR-30b expression increased, while Mkrn3 mRNA and protein content decreased, during rat postnatal maturation. Neonatal estrogen exposure, causing pubertal alterations, enhanced hypothalamic Mkrn3 and suppressed miR-30b expression in female rats. Functional in vitro analyses demonstrated a strong repressive action of miR-30b on Mkrn3 3' UTR. Moreover, central infusion during the juvenile period of target site blockers, tailored to prevent miR-30 binding to Mkrn3 3' UTR, reversed the prepubertal down-regulation of hypothalamic Mkrn3 protein and delayed female puberty. Collectively, our data unveil a novel hypothalamic miRNA pathway, involving miR-30, with a prominent role in the control of puberty via Mkrn3 repression. These findings expand our current understanding of the molecular basis of puberty and its disease states.


Asunto(s)
Hipotálamo/metabolismo , MicroARNs/fisiología , Maduración Sexual/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Sitios de Unión , Línea Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , MicroARNs/metabolismo , Ratas , Análisis de Secuencia de ADN
3.
Int J Mol Sci ; 23(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35328539

RESUMEN

Weight gain is a hallmark of decreased estradiol (E2) levels because of menopause or following surgical ovariectomy (OVX) at younger ages. Of note, this weight gain tends to be around the abdomen, which is frequently associated with impaired metabolic homeostasis and greater cardiovascular risk in both rodents and humans. However, the molecular underpinnings and the neuronal basis for these effects remain to be elucidated. The aim of this study is to elucidate whether the kappa-opioid receptor (k-OR) system is involved in mediating body weight changes associated with E2 withdrawal. Here, we document that body weight gain induced by OVX occurs, at least partially, in a k-OR dependent manner, by modulation of energy expenditure independently of food intake as assessed in Oprk1-/-global KO mice. These effects were also observed following central pharmacological blockade of the k-OR system using the k-OR-selective antagonist PF-04455242 in wild type mice, in which we also observed a decrease in OVX-induced weight gain associated with increased UCP1 positive immunostaining in brown adipose tissue (BAT) and browning of white adipose tissue (WAT). Remarkably, the hypothalamic mTOR pathway plays an important role in regulating weight gain and adiposity in OVX mice. These findings will help to define new therapies to manage metabolic disorders associated with low/null E2 levels based on the modulation of central k-OR signaling.


Asunto(s)
Ingestión de Alimentos , Receptores Opioides kappa , Tejido Adiposo Pardo/metabolismo , Animales , Peso Corporal , Metabolismo Energético , Estrógenos/metabolismo , Femenino , Humanos , Ratones , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Ovariectomía/efectos adversos , Receptores Opioides kappa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Aumento de Peso
4.
Am J Physiol Endocrinol Metab ; 320(3): E496-E511, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33427049

RESUMEN

Tachykinin (TAC) signaling is an important element in the central control of reproduction. TAC family is mainly composed of substance P (SP), neurokinin A (NKA), and NKB, which bind preferentially to NK1, NK2, and NK3 receptors, respectively. While most studies have focused on the reproductive functions of NKB/NK3R, and to a lesser extent SP/NK1R, the relevance of NK2R, encoded by Tacr2, remains poorly characterized. Here, we address the physiological roles of NK2R in regulating the reproductive axis by characterizing a novel mouse line with congenital ablation of Tacr2. Activation of NK2R evoked acute luteinizing hormone (LH) responses in control mice, similar to those of agonists of NK1R and NK3R. Despite the absence of NK2R, Tacr2-/- mice displayed only partially reduced LH responses to an NK2R agonist, which, nonetheless, were abrogated after blockade of NK3R in Tacr2-/- males. While Tacr2-/- mice displayed normal pubertal timing, LH pulsatility was partially altered in Tacr2-/- females in adulthood, with suppression of basal LH levels, but no changes in the number of LH pulses. In addition, trends for increase in breeding intervals were detected in Tacr2-/- mice. However, null animals of both sexes were fertile, with no changes in estrous cyclicity or sex preference in social behavioral tests. In conclusion, stimulation of NK2R elicited LH responses in mice, while congenital ablation of Tacr2 partially suppressed basal and stimulated LH secretion, with moderate reproductive impact. Our data support a modest, albeit detectable, role of NK2R in the control of the gonadotropic axis, with partially overlapping and redundant functions with other tachykinin receptors.NEW & NOTEWORTHY We have explored here the impact of congenital ablation of the gene (Tacr2) encoding the tachykinin receptor, NK2R, in terms of neuroendocrine control of the reproductive axis, using a novel Tacr2 KO mouse line. Our data support a modest, albeit detectable, role of NK2R in the control of the gonadotropic axis, with partially overlapping and redundant functions with other tachykinin receptors.


Asunto(s)
Receptores de Neuroquinina-2/genética , Reproducción/genética , Animales , Femenino , Hormonas Esteroides Gonadales/metabolismo , Hipotálamo/metabolismo , Hormona Luteinizante/sangre , Masculino , Ratones , Ratones Noqueados , Ratones Obesos , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Receptores de Neuroquinina-2/deficiencia , Reproducción/fisiología , Transducción de Señal/genética , Transcriptoma
5.
Proc Natl Acad Sci U S A ; 115(45): E10758-E10767, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348767

RESUMEN

Conditions of metabolic distress, from malnutrition to obesity, impact, via as yet ill-defined mechanisms, the timing of puberty, whose alterations can hamper later cardiometabolic health and even life expectancy. AMP-activated protein kinase (AMPK), the master cellular energy sensor activated in conditions of energy insufficiency, has a major central role in whole-body energy homeostasis. However, whether brain AMPK metabolically modulates puberty onset remains unknown. We report here that central AMPK interplays with the puberty-activating gene, Kiss1, to control puberty onset. Pubertal subnutrition, which delayed puberty, enhanced hypothalamic pAMPK levels, while activation of brain AMPK in immature female rats substantially deferred puberty. Virogenetic overexpression of a constitutively active form of AMPK, selectively in the hypothalamic arcuate nucleus (ARC), which holds a key population of Kiss1 neurons, partially delayed puberty onset and reduced luteinizing hormone levels. ARC Kiss1 neurons were found to express pAMPK, and activation of AMPK reduced ARC Kiss1 expression. The physiological relevance of this pathway was attested by conditional ablation of the AMPKα1 subunit in Kiss1 cells, which largely prevented the delay in puberty onset caused by chronic subnutrition. Our data demonstrate that hypothalamic AMPK signaling plays a key role in the metabolic control of puberty, acting via a repressive modulation of ARC Kiss1 neurons in conditions of negative energy balance.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Desnutrición/metabolismo , Neuronas/metabolismo , Maduración Sexual/genética , Proteínas Quinasas Activadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Animales Modificados Genéticamente , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Restricción Calórica/efectos adversos , Estradiol/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica , Kisspeptinas/genética , Hormona Luteinizante/sangre , Desnutrición/genética , Desnutrición/fisiopatología , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Ribonucleótidos/farmacología , Transducción de Señal , Factores de Tiempo
6.
Cell Rep Med ; 5(2): 101401, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38340725

RESUMEN

The p63 protein has pleiotropic functions and, in the liver, participates in the progression of nonalcoholic fatty liver disease (NAFLD). However, its functions in hepatic stellate cells (HSCs) have not yet been explored. TAp63 is induced in HSCs from animal models and patients with liver fibrosis and its levels positively correlate with NAFLD activity score and fibrosis stage. In mice, genetic depletion of TAp63 in HSCs reduces the diet-induced liver fibrosis. In vitro silencing of p63 blunts TGF-ß1-induced HSCs activation by reducing mitochondrial respiration and glycolysis, as well as decreasing acetyl CoA carboxylase 1 (ACC1). Ectopic expression of TAp63 induces the activation of HSCs and increases the expression and activity of ACC1 by promoting the transcriptional activity of HER2. Genetic inhibition of both HER2 and ACC1 blunt TAp63-induced activation of HSCs. Thus, TAp63 induces HSC activation by stimulating the HER2-ACC1 axis and participates in the development of liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Activación Metabólica , Cirrosis Hepática/genética , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Fibrosis , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo
7.
Mol Metab ; 75: 101776, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37453647

RESUMEN

OBJECTIVE: O-GlcNAcylation is a post-translational modification that directly couples the processes of nutrient sensing, metabolism, and signal transduction, affecting protein function and localization, since the O-linked N-acetylglucosamine moiety comes directly from the metabolism of glucose, lipids, and amino acids. The addition and removal of O-GlcNAc of target proteins are mediated by two highly conserved enzymes: O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and O-GlcNAcase (OGA), respectively. Deregulation of O-GlcNAcylation has been reported to be associated with various human diseases such as cancer, diabetes, and cardiovascular diseases. The contribution of deregulated O-GlcNAcylation to the progression and pathogenesis of NAFLD remains intriguing, and a better understanding of its roles in this pathophysiological context is required to uncover novel avenues for therapeutic intervention. By using a translational approach, our aim is to describe the role of OGT and O-GlcNAcylation in the pathogenesis of NAFLD. METHODS: We used primary mouse hepatocytes, human hepatic cell lines and in vivo mouse models of steatohepatitis to manipulate O-GlcNAc transferase (OGT). We also studied OGT and O-GlcNAcylation in liver samples from different cohorts of people with NAFLD. RESULTS: O-GlcNAcylation was upregulated in the liver of people and animal models with steatohepatitis. Downregulation of OGT in NAFLD-hepatocytes improved diet-induced liver injury in both in vivo and in vitro models. Proteomics studies revealed that mitochondrial proteins were hyper-O-GlcNAcylated in the liver of mice with steatohepatitis. Inhibition of OGT is able to restore mitochondrial oxidation and decrease hepatic lipid content in in vitro and in vivo models of NAFLD. CONCLUSIONS: These results demonstrate that deregulated hyper-O-GlcNAcylation favors NAFLD progression by reducing mitochondrial oxidation and promoting hepatic lipid accumulation.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Regulación hacia Abajo , Acetilglucosamina/metabolismo , Mitocondrias/metabolismo , Hepatocitos/metabolismo , Lípidos
8.
Metabolism ; 129: 155141, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35074314

RESUMEN

BACKGROUND: Perturbations in the timing of puberty, with potential adverse consequences in later health, are increasingly common. The underlying neurohormonal mechanisms are unfolded, but nutritional alterations are key contributors. Efforts to unveil the basis of normal puberty and its metabolic control have focused on mechanisms controlling expression of Kiss1, the gene encoding the puberty-activating neuropeptide, kisspeptin. However, other regulatory phenomena remain ill-defined. Here, we address the putative role of the G protein-coupled-receptor kinase-2, GRK2, in GnRH neurons, as modulator of pubertal timing via repression of the actions of kisspeptin, in normal maturation and conditions of nutritional deficiency. METHODS: Hypothalamic RNA and protein expression analyses were conducted in maturing female rats. Pharmacological studies involved central administration of GRK2 inhibitor, ßARK1-I, and assessment of gonadotropin responses to kisspeptin or phenotypic and hormonal markers of puberty, under normal nutrition or early subnutrition in female rats. In addition, a mouse line with selective ablation of GRK2 in GnRH neurons, aka G-GRKO, was generated, in which hormonal responses to kisspeptin and puberty onset were monitored, in normal conditions and after nutritional deprivation. RESULTS: Hypothalamic GRK2 expression increased along postnatal maturation in female rats, especially in the preoptic area, where most GnRH neurons reside, but decreased during the juvenile-to-pubertal transition. Blockade of GRK2 activity enhanced Ca+2 responses to kisspeptin in vitro, while central inhibition of GRK2 in vivo augmented gonadotropin responses to kisspeptin and advanced puberty onset. Postnatal undernutrition increased hypothalamic GRK2 expression and delayed puberty onset, the latter being partially reversed by central GRK2 inhibition. Conditional ablation of GRK2 in GnRH neurons enhanced gonadotropin responses to kisspeptin, accelerated puberty onset, and increased LH pulse frequency, while partially prevented the negative impact of subnutrition on pubertal timing and LH pulsatility in mice. CONCLUSIONS: Our data disclose a novel pathway whereby GRK2 negatively regulates kisspeptin actions in GnRH neurons, as major regulatory mechanism for tuning pubertal timing in nutritionally-compromised conditions.


Asunto(s)
Kisspeptinas , Desnutrición , Animales , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Desnutrición/metabolismo , Ratones , Neuronas/metabolismo , Ratas , Receptores de Kisspeptina-1/metabolismo , Maduración Sexual/fisiología
9.
Nat Commun ; 13(1): 4663, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945211

RESUMEN

Kiss1 neurons, producing kisspeptins, are essential for puberty and fertility, but their molecular regulatory mechanisms remain unfolded. Here, we report that congenital ablation of the microRNA-synthesizing enzyme, Dicer, in Kiss1 cells, causes late-onset hypogonadotropic hypogonadism in both sexes, but is compatible with pubertal initiation and preserved Kiss1 neuronal populations at the infantile/juvenile period. Yet, failure to complete puberty and attain fertility is observed only in females. Kiss1-specific ablation of Dicer evokes disparate changes of Kiss1-cell numbers and Kiss1/kisspeptin expression between hypothalamic subpopulations during the pubertal-transition, with a predominant decline in arcuate-nucleus Kiss1 levels, linked to enhanced expression of its repressors, Mkrn3, Cbx7 and Eap1. Our data unveil that miRNA-biosynthesis in Kiss1 neurons is essential for pubertal completion and fertility, especially in females, but dispensable for initial reproductive maturation and neuronal survival in both sexes. Our results disclose a predominant miRNA-mediated inhibitory program of repressive signals that is key for precise regulation of Kiss1 expression and, thereby, reproductive function.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Kisspeptinas , Ribonucleasa III/metabolismo , Animales , Femenino , Fertilidad , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Ribonucleasa III/genética , Maduración Sexual/genética
10.
Nat Metab ; 4(7): 901-917, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35879461

RESUMEN

Early-life determinants are thought to be a major factor in the rapid increase of obesity. However, while maternal nutrition has been extensively studied, the effects of breastfeeding by the infant on the reprogramming of energy balance in childhood and throughout adulthood remain largely unknown. Here we show that delayed weaning in rat pups protects them against diet-induced obesity in adulthood, through enhanced brown adipose tissue thermogenesis and energy expenditure. In-depth metabolic phenotyping in this rat model as well as in transgenic mice reveals that the effects of prolonged suckling are mediated by increased hepatic fibroblast growth factor 21 (FGF21) production and tanycyte-controlled access to the hypothalamus in adulthood. Specifically, FGF21 activates GABA-containing neurons expressing dopamine receptor 2 in the lateral hypothalamic area and zona incerta. Prolonged breastfeeding thus constitutes a protective mechanism against obesity by affecting long-lasting physiological changes in liver-to-hypothalamus communication and hypothalamic metabolic regulation.


Asunto(s)
Lactancia Materna , Obesidad , Animales , Femenino , Factores de Crecimiento de Fibroblastos , Humanos , Hipotálamo/metabolismo , Hígado/metabolismo , Ratones , Obesidad/metabolismo , Obesidad/prevención & control , Ratas
11.
J Clin Invest ; 131(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34324439

RESUMEN

Hypothalamic glucose sensing enables an organism to match energy expenditure and food intake to circulating levels of glucose, the main energy source of the brain. Here, we established that tanycytes of the arcuate nucleus of the hypothalamus, specialized glia that line the wall of the third ventricle, convert brain glucose supplies into lactate that they transmit through monocarboxylate transporters to arcuate proopiomelanocortin neurons, which integrate this signal to drive their activity and to adapt the metabolic response to meet physiological demands. Furthermore, this transmission required the formation of extensive connexin-43 gap junction-mediated metabolic networks by arcuate tanycytes. Selective suppression of either tanycytic monocarboxylate transporters or gap junctions resulted in altered feeding behavior and energy metabolism. Tanycytic intercellular communication and lactate production are thus integral to the mechanism by which hypothalamic neurons that regulate energy and glucose homeostasis efficiently perceive alterations in systemic glucose levels as a function of the physiological state of the organism.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Células Ependimogliales/metabolismo , Glucosa/metabolismo , Ácido Láctico/metabolismo , Proopiomelanocortina/metabolismo , Animales , Metabolismo Energético , Conducta Alimentaria/fisiología , Uniones Comunicantes/metabolismo , Técnicas de Silenciamiento del Gen , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neuronas/metabolismo , Transducción de Señal , Simportadores/antagonistas & inhibidores , Simportadores/genética , Simportadores/metabolismo
12.
Redox Biol ; 41: 101945, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33744652

RESUMEN

Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuin homologs of the yeast Sir2 gene that has emerged as an important player in the regulation of energy metabolism in peripheral tissues. However, its role in the hypothalamus has not been explored. Herein, we show that the genetic inhibition of SIRT3 in the hypothalamic arcuate nucleus (ARC) induced a negative energy balance and improvement of several metabolic parameters. These effects are specific for POMC neurons, because ablation of SIRT3 in POMC, but not in AgRP neurons, decreased body weight and adiposity, increased energy expenditure and brown adipose tissue (BAT) activity, and induced browning in white adipose tissue (WAT). Notably, the depletion of SIRT3 in POMC neurons caused these effects in male mice fed a chow diet but failed to affect energy balance in males fed a high fat diet and females under both type of diets. Overall, we provide the first evidence pointing for a key role of SIRT3 in POMC neurons in the regulation of energy balance.


Asunto(s)
Proopiomelanocortina , Sirtuina 3 , Tejido Adiposo Pardo/metabolismo , Animales , Dieta Alta en Grasa , Metabolismo Energético , Femenino , Masculino , Ratones , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Sirtuina 3/metabolismo
13.
Cell Metab ; 32(6): 951-966.e8, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33080217

RESUMEN

Childhood obesity, especially in girls, is frequently bound to earlier puberty, which is linked to higher disease burden later in life. The mechanisms underlying this association remain elusive. Here we show that brain ceramides participate in the control of female puberty and contribute to its alteration in early-onset obesity in rats. Postnatal overweight caused earlier puberty and increased hypothalamic ceramide content, while pharmacological activation of ceramide synthesis mimicked the pubertal advancement caused by obesity, specifically in females. Conversely, central blockade of de novo ceramide synthesis delayed puberty and prevented the effects of the puberty-activating signal, kisspeptin. This phenomenon seemingly involves a circuit encompassing the paraventricular nucleus (PVN) and ovarian sympathetic innervation. Early-onset obesity enhanced PVN expression of SPTLC1, a key enzyme for ceramide synthesis, and advanced the maturation of the ovarian noradrenergic system. In turn, obesity-induced pubertal precocity was reversed by virogenetic suppression of SPTLC1 in the PVN. Our data unveil a pathway, linking kisspeptin, PVN ceramides, and sympathetic ovarian innervation, as key for obesity-induced pubertal precocity.


Asunto(s)
Ceramidas/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Ovario/metabolismo , Obesidad Infantil , Pubertad Precoz , Animales , Femenino , Masculino , Obesidad Infantil/complicaciones , Obesidad Infantil/metabolismo , Pubertad Precoz/etiología , Pubertad Precoz/metabolismo , Ratas Wistar
14.
Metabolism ; 98: 84-94, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31226351

RESUMEN

BACKGROUND: Kisspeptins, encoded by Kiss1, have emerged as essential regulators of puberty and reproduction by primarily acting on GnRH neurons, via their canonical receptor, Gpr54. Mounting, as yet fragmentary, evidence strongly suggests that kisspeptin signaling may also participate in the control of key aspects of body energy and metabolic homeostasis. However, characterization of such metabolic dimension of kisspeptins remains uncomplete, without an unambiguous discrimination between the primary metabolic actions of kisspeptins vs. those derived from their ability to stimulate the secretion of gonadal hormones, which have distinct metabolic actions on their own. In this work, we aimed to tease apart primary vs. secondary effects of kisspeptins in the control of key aspects of metabolic homeostasis using genetic models of impaired kisspeptin signaling and/or gonadal hormone status. METHODS: Body weight (BW) gain and composition, food intake and key metabolic parameters, including glucose tolerance, were comparatively analyzed, in lean and obesogenic conditions, in mice lacking kisspeptin signaling due to global inactivation of Gpr54 (displaying profound hypogonadism; Gpr54-/-) vs. Gpr54 null mice with selective re-introduction of Gpr54 expression only in GnRH cells (Gpr54-/-Tg), where kisspeptin signaling elsewhere than in GnRH neurons is ablated but gonadal function is preserved. RESULTS: In male mice, global elimination of kisspeptin signaling resulted in decreased BW, feeding suppression and increased adiposity, without overt changes in glucose tolerance, whereas Gpr54-/- female mice displayed enhanced BW gain at adulthood, increased adiposity and perturbed glucose tolerance, despite reduced food intake. Gpr54-/-Tg rescued mice showed altered postnatal BW gain in males and mildly perturbed glucose tolerance in females, with intermediate phenotypes between control and global KO animals. Yet, body composition and leptin levels were similar to controls in gonadal-rescued mice. Exposure to obesogenic insults, such as high fat diet (HFD), resulted in exaggerated BW gain and adiposity in global Gpr54-/- mice of both sexes, and worsening of glucose tolerance, especially in females. Yet, while rescued Gpr54-/-Tg males displayed intermediate BW gain and feeding profiles and impaired glucose tolerance, rescued Gpr54-/-Tg females behaved as controls, except for a modest deterioration of glucose tolerance after ovariectomy. CONCLUSION: Our data support a global role of kisspeptin signaling in the control of body weight and metabolic homeostasis, with a dominant contribution of gonadal hormone-dependent actions. However, our results document also discernible primary effects of kisspeptin signaling in the regulation of body weight gain, feeding and responses to obesogenic insults, which occur in a sexually-dimorphic manner. SUMMARY OF TRANSLATIONAL RELEVANCE: Kisspeptins, master regulators of reproduction, may also participate in the control of key aspects of body energy and metabolic homeostasis; yet, the nature of such metabolic actions remains debatable, due in part to the fact that kisspeptins modulate gonadal hormones, which have metabolic actions on their own. By comparing the metabolic profiles of two mouse models with genetic inactivation of kisspeptin signaling but different gonadal status (hypogonadal vs. preserved gonadal function), we provide herein a systematic dissection of gonadal-dependent vs. -independent metabolic actions of kisspeptins. Our data support a global role of kisspeptin signaling in the control of body weight and metabolic homeostasis, with a dominant contribution of gonadal hormone-dependent actions. However, our results document also discernible primary effects of kisspeptin signaling in the regulation of body weight gain, feeding and responses to obesogenic insults, which occur in a sexually-dimorphic manner. These data pave the way for future analyses addressing the eventual contribution of altered kisspeptin signaling in the development of metabolic alterations, especially in conditions linked to reproductive dysfunction.


Asunto(s)
Peso Corporal/fisiología , Hormonas Gonadales/fisiología , Homeostasis/fisiología , Kisspeptinas/fisiología , Transducción de Señal/fisiología , Animales , Dieta , Ingestión de Alimentos , Femenino , Intolerancia a la Glucosa/genética , Masculino , Ratones , Ratones Noqueados , Obesidad/genética , Ovariectomía , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Aumento de Peso/genética
15.
Diabetes ; 68(12): 2210-2222, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31530579

RESUMEN

Melanin-concentrating hormone (MCH) is an important regulator of food intake, glucose metabolism, and adiposity. However, the mechanisms mediating these actions remain largely unknown. We used pharmacological and genetic approaches to show that the sirtuin 1 (SIRT1)/FoxO1 signaling pathway in the hypothalamic arcuate nucleus (ARC) mediates MCH-induced feeding, adiposity, and glucose intolerance. MCH reduces proopiomelanocortin (POMC) neuronal activity, and the SIRT1/FoxO1 pathway regulates the inhibitory effect of MCH on POMC expression. Remarkably, the metabolic actions of MCH are compromised in mice lacking SIRT1 specifically in POMC neurons. Of note, the actions of MCH are independent of agouti-related peptide (AgRP) neurons because inhibition of γ-aminobutyric acid receptor in the ARC did not prevent the orexigenic action of MCH, and the hypophagic effect of MCH silencing was maintained after chemogenetic stimulation of AgRP neurons. Central SIRT1 is required for MCH-induced weight gain through its actions on the sympathetic nervous system. The central MCH knockdown causes hypophagia and weight loss in diet-induced obese wild-type mice; however, these effects were abolished in mice overexpressing SIRT1 fed a high-fat diet. These data reveal the neuronal basis for the effects of MCH on food intake, body weight, and glucose metabolism and highlight the relevance of SIRT1/FoxO1 pathway in obesity.


Asunto(s)
Adiposidad/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Intolerancia a la Glucosa/metabolismo , Hiperfagia/metabolismo , Hormonas Hipotalámicas/farmacología , Melaninas/farmacología , Neuronas/efectos de los fármacos , Hormonas Hipofisarias/farmacología , Proopiomelanocortina/metabolismo , Sirtuina 1/metabolismo , Adiposidad/fisiología , Animales , Proteína Forkhead Box O1/genética , Intolerancia a la Glucosa/genética , Hiperfagia/genética , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Sirtuina 1/genética
16.
Metabolism ; 87: 87-97, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30075164

RESUMEN

BACKGROUND: RF-amide-related peptide-3 (RFRP-3), the mammalian ortholog of gonadotropin-inhibiting hormone, operates as inhibitory signal for the reproductive axis. Recently, RFRP-3 has been also suggested to stimulate feeding, and therefore might contribute to the control of body weight and its alterations. Yet, characterization of the metabolic actions of RFRP-3 has been so far superficial and mostly pharmacological. Here, we aim to investigate the physiological roles of RFRP-3 signaling in the control of feeding and metabolic homeostasis using a novel mouse model of genetic ablation of its canonical receptor, NPFF1R. METHODS: Food intake, body weight gain and composition, and key metabolic parameters, including glucose tolerance and insulin sensitivity, were monitored in mice with constitutive inactivation of NPFF1R. RESULTS: Congenital elimination of NPFF1R in male mice resulted in changes in feeding patterns, with a decrease in spontaneous food intake and altered responses to leptin and ghrelin: leptin-induced feeding suppression was exaggerated in NPFF1R null mice, whereas orexigenic responses to ghrelin were partially blunted. Concordant with this pro-anorectic phenotype, hypothalamic expression of Pomc was increased in NPFF1R null mice. In contrast, spontaneous feeding and neuropeptide expression remained unaltered in NPFF1R KO female mice. Despite propensity for reduced feeding, ablation of NPFF1R signaling in male mice did not cause overt alterations in body weight (BW) gain or composition, neither it affected BW responses to high fat diet (HFD), total energy expenditure or RQ ratios. Yet, NPFF1R KO males showed a decrease in locomotor activity. Conversely, NPFF1R null female mice tended to be heavier and displayed exaggerated BW increases in response to obesogenic insults, such as HFD or ovariectomy. These were associated to increased fat mass, decreased total energy expenditure in HFD, and unaltered RQ ratios or spontaneous locomotor activity. Finally, lack of NPFF1R signaling worsened the metabolic impact of HFD on glycemic homeostasis in males, as revealed by impaired glucose tolerance and insulin sensitivity, while female mice remained unaffected. CONCLUSION: Our data support a discernible orexigenic role of NPFF1R signaling selectively in males, which might modulate the effects of leptin and ghrelin on food intake. In addition, our study is the first to disclose the sex-biased, deleterious impact of the lack of NPFF1R signaling on body weight and fat composition, energy expenditure, locomotor activity and glucose balance, which exaggerates some of the metabolic consequences of concurrent obesogenic insults, such as HFD, in a sexually dimorphic manner. SUMMARY OF TRANSLATIONAL RELEVANCE: Our data are the first to document the nature and magnitude of the regulatory actions of RFRP-3/NPFF1R signaling in the control of feeding and metabolic homeostasis in a physiological setting. Our results not only suggest an orexigenic action of endogenous RFRP-3, specifically in males, but reveal also the detrimental impact of ablation of NPFF1R signaling on body composition, energy expenditure, locomotor activity or glucose balance, especially when concurrent with other obesogenic insults, as HFD, thereby providing the first evidence for additional metabolic effects of RFRP-3, other that the mere control of feeding. Interestingly, alterations of such key metabolic parameters occurred in a sex-biased manner, with males being more sensitive to deregulation of locomotor activity and glycemic control, while females displayed clearer obesogenic responses and deregulated energy expenditure. While our study cannot discard the possibility of RFRP-3 actions via alternative pathways, such as NPFF2R, our data pave the way for future analyses addressing the eventual contribution of altered RFRP-3/NPFF1R signaling in the development of metabolic alterations (including obesity and its comorbidities), especially in conditions associated to reproductive dysfunction.


Asunto(s)
Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Neuropéptidos/metabolismo , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/fisiología , Animales , Composición Corporal/genética , Dieta Alta en Grasa , Metabolismo Energético/genética , Ghrelina/farmacología , Intolerancia a la Glucosa/genética , Homeostasis , Hipotálamo/metabolismo , Resistencia a la Insulina/genética , Leptina/farmacología , Masculino , Ratones , Ratones Noqueados , Caracteres Sexuales , Aumento de Peso/genética
17.
Endocrinology ; 159(2): 1005-1018, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29309558

RESUMEN

Obesity and its comorbidities are reaching epidemic proportions worldwide. Maternal obesity is known to predispose the offspring to metabolic disorders, independently of genetic inheritance. This intergenerational transmission has also been suggested for paternal obesity, with a potential negative impact on the metabolic and, eventually, reproductive health of the offspring, likely via epigenetic changes in spermatozoa. However, the neuroendocrine component of such phenomenon and whether paternal obesity sensitizes the offspring to the disturbances induced by high-fat diet (HFD) remain poorly defined. We report in this work the metabolic and reproductive impact of HFD in the offspring from obese fathers, with attention to potential sex differences and alterations of hypothalamic Kiss1 system. Lean and obese male rats were mated with lean virgin female rats; male and female offspring were fed HFD from weaning onward and analyzed at adulthood. The increases in body weight and leptin levels, but not glucose intolerance, induced by HFD were significantly augmented in the male, but not female, offspring from obese fathers. Paternal obesity caused a decrease in luteinizing hormone (LH) levels and exacerbated the drop in circulating testosterone and gene expression of its key biosynthetic enzymes caused by HFD in the male offspring. LH responses to central kisspeptin-10 administration were also suppressed in HFD males from obese fathers. In contrast, paternal obesity did not significantly alter gonadotropin levels in the female offspring fed HFD, although these females displayed reduced LH responses to kisspeptin-10. Our findings suggest that HFD-induced metabolic and reproductive disturbances are exacerbated by paternal obesity preferentially in males, whereas kisspeptin effects are affected in both sexes.


Asunto(s)
Padre , Kisspeptinas/fisiología , Obesidad , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Reproducción/fisiología , Animales , Femenino , Masculino , Obesidad/complicaciones , Embarazo , Ratas , Ratas Wistar , Salud Reproductiva , Caracteres Sexuales , Transducción de Señal/fisiología
18.
Sci Rep ; 7: 46381, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28401948

RESUMEN

Puberty is a key developmental event whose primary regulatory mechanisms remain poorly understood. Precise dating of puberty is crucial for experimental (preclinical) studies on its complex neuroendocrine controlling networks. In female laboratory rodents, external signs of puberty, such as vaginal opening (VO) and epithelial cell cornification (i.e., first vaginal estrus, FE), are indirectly related to the maturational state of the ovary and first ovulation, which is the unequivocal marker of puberty. Whereas in rats, VO and FE are almost simultaneous with the first ovulation, these events are not so closely associated in mice. Moreover, external signs of puberty can be uncoupled with first ovulation in both species under certain experimental conditions. We propose herein the Pubertal Ovarian Maturation Score (Pub-score), as novel, reliable method to assess peripubertal ovarian maturation in rats and mice. This method is founded on histological evaluation of pre-pubertal ovarian maturation, based on antral follicle development, and the precise timing of first ovulation, by retrospective dating of maturational and regressive changes in corpora lutea. This approach allows exact timing of puberty within a time-window of at least two weeks after VO in both species, thus facilitating the identification and precise dating of advanced or delayed puberty under various experimental conditions.


Asunto(s)
Estro/fisiología , Ovulación/fisiología , Maduración Sexual/fisiología , Vagina/fisiología , Animales , Animales de Laboratorio , Femenino , Ratones , Ratas , Factores de Tiempo
19.
Sci Rep ; 6: 19206, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26755241

RESUMEN

Kisspeptins, ligands of the receptor, Gpr54, are potent stimulators of puberty and fertility. Yet, whether direct kisspeptin actions on GnRH neurons are sufficient for the whole repertoire of their reproductive effects remains debatable. To dissect out direct vs. indirect effects of kisspeptins on GnRH neurons in vivo, we report herein the detailed reproductive/gonadotropic characterization of a Gpr54 null mouse line with selective re-introduction of Gpr54 expression only in GnRH cells (Gpr54(-/-)Tg; rescued). Despite preserved fertility, adult rescued mice displayed abnormalities in gonadal microstructure, with signs of precocious ageing in females and elevated LH levels with normal-to-low testosterone secretion in males. Gpr54(-/-)Tg rescued mice showed also altered gonadotropin responses to negative feedback withdrawal, while luteinizing hormone responses to various gonadotropic regulators were variably affected, with partially blunted relative (but not absolute) responses to kisspeptin-10, NMDA and the agonist of tachykinin receptors, NK2R. Our data confirm that direct effects of kisspeptins on GnRH cells are sufficient to attain fertility. Yet, such direct actions appear to be insufficient to completely preserve proper functionality of gonadotropic axis, suggesting a role of kisspeptin signaling outside GnRH cells.


Asunto(s)
Fertilidad/efectos de los fármacos , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Animales , Retroalimentación Fisiológica , Femenino , Gonadotropinas/metabolismo , Masculino , Ratones , Ratones Noqueados , Ovario/metabolismo , Ovario/ultraestructura , Fenotipo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Reproducción , Testículo/metabolismo
20.
Endocrinology ; 156(8): 2984-98, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25984764

RESUMEN

The reproductive impact of persistent energy excess in the female remains incompletely defined, yet the escalating prevalence of obesity calls for better understanding of this phenomenon. Also along this line, the influence of ovarian hormones on the pathophysiology of obesity and its comorbidities merits further investigation. We study here the metabolic and gonadotropic impact of sequential obesogenic insults, namely postnatal overnutrition [by rearing in small litters (SL)] and high-fat diet (HFD) after weaning, in gonadal-intact and ovariectomized (OVX) female rats. In young (4 mo) females, SL or HFD similarly increased body weight, yet only a HFD evoked additional metabolic perturbations, some of which were worsened by precedent SL. In addition, HFD concomitantly decreased LH and estradiol levels and, when combined with SL, suppressed Kiss1 expression in the hypothalamic arcuate nucleus in 4-month females, whereas HFD up to 10-month also reduced LH responses to kisspeptin-10. OVX caused rapid deterioration of the metabolic profile, with overweight, increased energy intake, and deregulation of leptin and glucose/insulin levels, effects whose magnitude was similar to, if not higher than, HFD. Summation of previous obesogenic insults maximally increased body weight, basal leptin, insulin and glucose levels, and glucose intolerance. Yet OVX obliterated the inhibitory effects of overweight/HFD on gonadotropin levels and arcuate nucleus Kiss1 expression. Our study documents the deleterious consequences of sequential obesogenic insults on the female gonadotropin axis, which involve central impairment of the Kiss1 system. In addition, our work delineates the dramatic impact of the loss of ovarian secretions, as the menopausal model, on the metabolic profile of female rats, especially when combined with preceding obesogenic challenges.


Asunto(s)
Dieta Alta en Grasa , Gonadotrofos/fisiología , Ovario/metabolismo , Hipernutrición/metabolismo , Hipernutrición/fisiopatología , Envejecimiento/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Gonadotrofos/metabolismo , Fenómenos Fisiológicos de la Nutrición , Obesidad/etiología , Obesidad/metabolismo , Obesidad/fisiopatología , Ovario/fisiopatología , Ratas , Ratas Wistar , Reproducción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA