Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Br J Nutr ; 131(1): 1-16, 2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37469170

RESUMEN

Taste plays a fundamental role in an animal's ability to detect nutrients and transmits key dietary information to the brain, which is crucial for its growth and survival. Providing alternative terrestrial ingredients early in feeding influences the growth of rainbow trout (RT, Oncorhynchus mykiss). Thus, the present study aimed to assess the influence, via long-term feeding (from the first feeding to 8 months), of alternative plant ingredients (V diet for vegetable diet v. C diet for a control diet) in RT on the mechanism of fat sensing at the gustatory level. After the feeding trial, we studied the pathways of the fat-sensing mechanism in tongue tissue and the integrated response in the brain. To this end, we analysed the expression pattern of free fatty acid receptors (ffar) 1 and 2, markers of calcium-signalling pathways (phospholipase Cß, Orai, Stim or Serca), the serotonin level (a key neurotransmitter in taste buds) and the expression pattern of appetite-regulating neuropeptides in the hypothalamus (central area of appetite regulation). The results revealed that the V diet modified the expression pattern of ffar1 and paralogs of ffar2 genes in tongue tissue, along with differential regulation of calcium-signalling pathways and a defect in serotonin level and brain turnover, without influencing neuropeptide expression. This study is the first to support that changes in feeding behaviour of RT fed a V diet could be due to the difference in nutrient sensing and a decrease in hedonic sensation. We revealed that RT have similar fat-detection mechanisms as mammals.


Asunto(s)
Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/metabolismo , Ácidos Grasos no Esterificados , Verduras , Calcio/metabolismo , Serotonina/metabolismo , Dieta/veterinaria , Mamíferos
2.
J Nutr ; 152(1): 29-39, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34550380

RESUMEN

BACKGROUND: A high carbohydrate-low protein diet can induce hepatic global DNA hypomethylation in trout. The mechanisms remain unclear. OBJECTIVES: We aimed to investigate whether an increase in dietary carbohydrates (dHCs) or a decrease in dietary proteins (dLPs) can cause hepatic global DNA hypomethylation, as well as explore the underlying mechanisms in trout. METHODS: Two feeding trials were conducted on juvenile males, both of which involved a 4-d fasting and 4-d refeeding protocol. In trial 1, trout were fed either a high protein-no carbohydrate [HP-NC, protein 60% dry matter (DM), carbohydrates 0% DM] or a moderate protein-high carbohydrate (MP-HC, protein 40% DM, carbohydrates 30% DM) diet. In trial 2, fish were fed either a moderate protein-no carbohydrate (MP-NC, protein 40% DM, carbohydrates 0% DM), an MP-HC (protein 40% DM, carbohydrates 30% DM), or a low protein-no carbohydrate (LP-NC, protein 20% DM, carbohydrates 0% DM) diet to separate the effects of dHCs and dLPs on the hepatic methylome. Global CmCGG methylation, DNA demethylation derivative concentrations, and mRNA expression of DNA (de)methylation-related genes were measured. Differences were tested by 1-factor ANOVA when data were normally distributed or by Kruskal-Wallis nonparametric test if not. RESULTS: In both trials, global CmCGG methylation concentrations remained unaffected, but the hepatic 5-mdC content decreased after refeeding (1-3%). The MP-HC group had 3.4-fold higher hepatic 5-hmdC and a similar 5-mdC concentration compared with the HP-NC group in trial 1. Both MP-HC and LP-NC diets lowered the hepatic 5-mdC content (1-2%), but only the LP-NC group had a significantly lower 5-hmdC concentration (P < 0.01) compared with MP-NC group in trial 2. CONCLUSIONS: dHC and dLP independently induced hepatic global DNA demethylation in trout. The alterations in other methylation derivative concentrations indicated the demethylation process was achieved through an active demethylation pathway and probably occurred at non-CmCGG sites.


Asunto(s)
Oncorhynchus mykiss , Animales , Dieta/veterinaria , Dieta con Restricción de Proteínas , Carbohidratos de la Dieta/farmacología , Hígado/metabolismo , Masculino , Fenotipo
3.
Br J Nutr ; 127(1): 23-34, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33658100

RESUMEN

This study evaluated how different forms of selenium (Se) supplementation into rainbow trout broodstock diets modified the one-carbon metabolism of the progeny after the beginning of exogenous feeding and followed by hypoxia challenge. The progeny of three groups of rainbow trout broodstock fed either a control diet (Se level: 0·3 µg/g) or a diet supplemented with inorganic sodium selenite (Se level: 0·6 µg/g) or organic hydroxy-selenomethionine (Se level: 0·6 µg/g) was cross-fed with diets of similar Se composition for 11 weeks. Offspring were sampled either before or after being subjected to an acute hypoxic stress (1·7 mg/l dissolved oxygen) for 30 min. In normoxic fry, parental Se supplementation allowed higher glutathione levels compared with fry originating from parents fed the control diet. Parental hydroxy-selenomethionine treatment also increased cysteine and cysteinyl-glycine concentrations in fry. Dietary Se supplementation decreased glutamate-cysteine ligase (cgl) mRNA levels. Hydroxy-selenomethionine feeding also lowered the levels of some essential free amino acids in muscle tissue. Supplementation of organic Se to parents and fry reduced betaine-homocysteine S-methyltransferase (bhmt) expression in fry. The hypoxic stress decreased whole-body homocysteine, cysteine, cysteinyl-glycine and glutathione levels. Together with the higher mRNA levels of cystathionine beta-synthase (cbs), a transsulphuration enzyme, this suggests that under hypoxia, glutathione synthesis through transsulphuration might have been impaired by depletion of a glutathione precursor. In stressed fry, S-adenosylmethionine levels were significantly decreased, but S-adenosylhomocysteine remained stable. Decreased bhmt and adenosylmethionine decarboxylase 1a (amd1a) mRNA levels in stressed fry suggest a nutritional programming by parental Se also on methionine metabolism of rainbow trout.


Asunto(s)
Oncorhynchus mykiss , Selenio , Animales , Antioxidantes/metabolismo , Carbono/metabolismo , Cisteína , Dieta/veterinaria , Suplementos Dietéticos , Glutatión/metabolismo , Hipoxia , Oncorhynchus mykiss/metabolismo , ARN Mensajero/metabolismo , Selenio/metabolismo , Selenometionina/metabolismo
4.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216238

RESUMEN

Sense of smell is mediated by diverse families of olfactory sensing receptors, conveying important dietary information, fundamental for growth and survival. The aim of this study was to elucidate the role of the sensory olfactory pathways in the regulation of feeding behavior of carnivorous rainbow trout (RT, Oncorhynchus mykiss), from first feeding until 8 months. Compared to a commercial diet, RT fed with a total plant-based diet showed drastically altered growth performance associated with feed intake from an early stage. Exhaustive examination of an RT genome database identified three vomeronasal type 1 receptor-like (ORA), 10 vomeronasal type 2 receptor-like (OLFC) and 14 main olfactory receptor (MOR) genes, all highly expressed in sensory organs, indicating their potential functionality. Gene expression after feeding demonstrated the importance in olfactory sensing perception of some OLFC (olfcg6) and MOR (mor103, -107, -112, -113, -133) receptor family genes in RT. The gene ora1a showed evidence of involvement in olfactory sensing perception for fish fed with a commercial-like diet, while ora5b, mor118, mor124 and olfch1 showed evidence of involvement in fish fed with a plant-based diet. Results indicated an impact of a plant-based diet on the regulation of olfactory sensing pathways as well as influence on monoaminergic neurotransmission in brain areas related to olfactory-driven behaviors. The overall findings suggest that feeding behavior is mediated through olfactory sensing detection and olfactory-driven behavior pathways in RT.


Asunto(s)
Carnivoría/fisiología , Oncorhynchus mykiss/fisiología , Receptores Odorantes/fisiología , Olfato/fisiología , Alimentación Animal , Animales , Dieta/métodos , Dieta Vegetariana/métodos , Conducta Alimentaria/fisiología , Neuronas Receptoras Olfatorias/fisiología , Plantas
5.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35328356

RESUMEN

The replacement of fishmeal by plant proteins in aquafeeds imposes the use of synthetic methionine (MET) sources to balance the amino acid composition of alternative diets and so to meet the metabolic needs of fish of agronomic interest such as rainbow trout (RT-Oncorhynchus mykiss). Nonetheless, debates still exist to determine if one MET source is more efficiently used than another by fish. To address this question, the use of fish cell lines appeared a convenient strategy, since it allowed to perfectly control cell growing conditions notably by fully depleting MET from the media and studying which MET source is capable to restore cell growth/proliferation and metabolism when supplemented back. Thus, results of cell proliferation assays, Western blots, RT-qPCR and liquid chromatography analyses from two RT liver-derived cell lines revealed a better absorption and metabolization of DL-MET than DL-Methionine Hydroxy Analog (MHA) with the activation of the mechanistic Target Of Rapamycin (mTOR) pathway for DL-MET and the activation of integrated stress response (ISR) pathway for MHA. Altogether, the results clearly allow to conclude that both synthetic MET sources are not biologically equivalent, suggesting similar in vivo effects in RT liver and, therefore, questioning the MHA efficiencies in other RT tissues.


Asunto(s)
Oncorhynchus mykiss , Alimentación Animal/análisis , Animales , Línea Celular , Dieta , Hepatocitos/metabolismo , Hígado/metabolismo , Metionina/análogos & derivados , Metionina/química , Oncorhynchus mykiss/metabolismo
6.
J Exp Biol ; 222(Pt 18)2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31488624

RESUMEN

Methionine is a key factor in modulating the cellular availability of the main biological methyl donor S-adenosylmethionine (SAM), which is required for all biological methylation reactions including DNA and histone methylation. As such, it represents a potential critical factor in nutritional programming. Here, we investigated whether early methionine restriction at first feeding could have long-term programmed metabolic consequences in rainbow trout. For this purpose, trout fry were fed with either a control diet (C) or a methionine-deficient diet (MD) for 2 weeks from the first exogenous feeding. Next, fish were subjected to a 5 month growth trial with a standard diet followed by a 2 week challenge (with the MD or C diet) to test the programming effect of the early methionine restriction. The results showed that, whatever the dietary treatment of fry, the 2 week challenge with the MD diet led to a general mitochondrial defect associated with an increase in endoplasmic reticulum stress, mitophagy and apoptosis, highlighting the existence of complex cross-talk between these different functions. Moreover, for the first time, we also observed that fish fed the MD diet at the first meal later exhibited an increase in several critical factors of mitophagy, hinting that the early nutritional stimulus with methionine deficiency resulted in long-term programming of this cell function. Together, these data extend our understanding of the role of dietary methionine and emphasize the potential for this amino acid in the application of new feeding strategies, such as nutritional programming, to optimize the nutrition and health of farmed fish.


Asunto(s)
Metionina/deficiencia , Mitocondrias Hepáticas/fisiología , Oncorhynchus mykiss/metabolismo , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Apoptosis , Acuicultura , Dieta/efectos adversos , Dieta/veterinaria , Retículo Endoplásmico , Mitofagia , Oncorhynchus mykiss/fisiología
7.
Fish Shellfish Immunol ; 74: 43-51, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29288811

RESUMEN

The objective of the study was to characterize the response of the antioxidant defense system against dietary prooxidant conditions in rainbow trout juveniles. Fish (initial mean weight: 62 ±â€¯1 g) were fed three fishmeal and plant-derived protein-based diets supplemented with 15% fresh fish oil (CTL diet), 15% fresh fish oil from tuna by-products (BYP diet) or 15% autooxidized fish oil (OX diet) over a 12-week growth trial at 17.5 ±â€¯0.5 °C. No significant differences in growth performance were recorded between dietary groups. Muscle lipid content was reduced and n-6 PUFA levels were increased in rainbow trout fed diets BYP and OX compared to CTL. After 12 weeks of feeding, the level of lipid peroxidation products in muscle was not affected whereas the 8-isoprostane content in liver was increased in fish fed diet OX as well as plasma total and oxidized glutathione contents. The hepatic and muscle contents for α-tocopherol were decreased in fish fed BYP and OX. Hepatic antioxidant enzyme activities and mRNA levels were not affected after 12 weeks of feeding, except for catalase and glutathione peroxidase 1b2 mRNA levels that were decreased in trout fed diet OX. Fish fed diet OX and BYP displayed also reduced cytosolic Nrf2 and both cytosolic and nuclear NF-κB protein levels in liver. The present work indicates that feeding rainbow trout juveniles with fresh fish oil from by-products or moderately oxidized lipid appears not to be detrimental to the growth performance of fish. The mechanisms beyond the control of the antioxidant defense system by moderately oxidized lipid require further investigations in rainbow trout juveniles.


Asunto(s)
Antioxidantes/metabolismo , Aceites de Pescado/metabolismo , Oncorhynchus mykiss/metabolismo , Estrés Oxidativo/efectos de los fármacos , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Aceites de Pescado/administración & dosificación , Estrés Oxidativo/inmunología
9.
iScience ; 27(2): 108894, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38318367

RESUMEN

Amino acid (AA) transporters (AAT) control AA cellular fluxes across membranes, contributing to maintain cellular homeostasis. In this study, we took advantage of rainbow trout metabolic feature, which highly relies on dietary AA, to explore the cellular and physiological consequences of unbalanced diets on AAT dysregulations with a particular focus on cationic AAs (CAA), frequently underrepresented in plant-based diets. Results evidenced that 24 different CAAT are expressed in various trout tissues, part of which being subjected to AA- and CAA-dependent regulations, with y+LAT2 exchanger being prone to the strongest dysregulations. Moreover, CAA were shown to control two major AA-dependent activation pathways (namely mTOR and GCN2) but at different strength according to the CAA considered. A new feed formulation strategy has been put forward to improve specifically the CAA supplemented absorption in fish together with their growth performance. Such "precision formulation" strategy reveals high potential for nutrition practices, especially in aquaculture.

10.
Sci Rep ; 14(1): 12376, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811794

RESUMEN

Arachidonic acid (C20: 4n-6, AA) plays a fundamental role in fish physiology, influencing growth, survival and stress resistance. However, imbalances in dietary AA can have detrimental effects on fish health and performance. Optimal AA requirements for rainbow trout have not been established. This study aimed to elucidate the effects of varying dietary AA levels on survival, growth, long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic capacity, oxylipin profiles, lipid peroxidation, and stress resistance of rainbow trout fry. Over a period of eight weeks, 4000 female rainbow trout fry at the resorptive stage (0.12 g) from their first feeding were fed diets with varying levels of AA (0.6%, 1.1% or 2.5% of total fatty acids) while survival and growth metrics were closely monitored. The dietary trial was followed by an acute confinement stress test. Notably, while the fatty acid profiles of the fish reflected dietary intake, those fed an AA-0.6% diet showed increased expression of elongase5, highlighting their inherent ability to produce LC-PUFAs from C18 PUFAs and suggesting potential AA or docosapentaenoic acidn-6 (DPAn-6) biosynthesis. However, even with this biosynthetic capacity, the trout fed reduced dietary AA had higher mortality rates. The diet had no effect on final weight (3.38 g on average for the three diets). Conversely, increased dietary AA enhanced eicosanoid production from AA, suggesting potential inflammatory and oxidative consequences. This was further evidenced by an increase in non-enzymatic lipid oxidation metabolites, particularly in the AA-2.5% diet group, which had higher levels of phytoprostanes and isoprostanes, markers of cellular oxidative damage. Importantly, the AA-1.1% diet proved to be particularly beneficial for stress resilience. This was evidenced by higher post-stress turnover rates of serotonin and dopamine, neurotransmitters central to the fish's stress response. In conclusion, a dietary AA intake of 1.1% of total fatty acids appears to promote overall resilience in rainbow trout fry.


Asunto(s)
Ácido Araquidónico , Ácidos Grasos Insaturados , Oncorhynchus mykiss , Oxilipinas , Estrés Fisiológico , Animales , Oncorhynchus mykiss/metabolismo , Oxilipinas/metabolismo , Ácido Araquidónico/metabolismo , Ácidos Grasos Insaturados/metabolismo , Femenino , Alimentación Animal/análisis , Dieta/veterinaria , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
11.
Animal ; 16(12): 100670, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36402111

RESUMEN

It is now recognised that parental diets could alter their offspring metabolism, concept known as nutritional programming. For agronomic purposes, it has been previously proposed that programming could be employed as a strategy to prepare individual for future nutritional challenges. Concerning cultured fish that belong to high trophic level, plant-derived carbohydrates are a possible substitute for the traditional protein-rich fishmeal in broodstock diet, lowering thus the dietary protein-to-carbohydrate ratio (HC/LP nutrition). However, in mammals, numerous studies have previously demonstrated that parental HC/LP nutrition negatively affects their offspring in the long term. Therefore, the question of possible adaptation to plant-based diets, via parental nutrition, should be explored. First, the maternal HC/LP nutrition induced a global DNA hypomethylation in the liver of their offspring. Interestingly at the gene expression level, the effects brought by the maternal and paternal HC/LP nutrition cumulated in the liver, as indicated by the altered transcriptome. The paternal HC/LP nutrition significantly enhanced cholesterol synthesis at the transcriptomic level. Furthermore, hepatic genes involved in long-chain polyunsaturated fatty acids were significantly increased by the parental HC/LP nutrition, affecting thus both hepatic and muscle fatty acid profiles. Overall, the present study demonstrated that lipid metabolism could be modulated via a parental nutrition in rainbow trout, and that such modulations have consequences on their progeny phenotypes.


Asunto(s)
Metabolismo de los Lípidos , Oncorhynchus mykiss , Animales , Dieta con Restricción de Proteínas/veterinaria , Oncorhynchus mykiss/genética , Dieta/veterinaria , Ácidos Grasos/metabolismo , Carbohidratos de la Dieta/metabolismo , Hígado/metabolismo , Mamíferos/metabolismo
12.
Mycologia ; 103(6): 1230-44, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21642342

RESUMEN

The soilborne fungus Rhizoctonia solani is a pathogen of many plants and causes severe damage in crops around the world. Strains of R. solani from the anastomosis group (AG) 3 attack potatoes, leading to great yield losses and to the downgrading of production. The study of the genetic diversity of the strains of R. solani in France allows the structure of the populations to be determined and adapted control strategies against this pathogen to be established. The diversity of 73 French strains isolated from tubers grown in the main potato seed production areas and 31 strains isolated in nine other countries was assessed by phylogenetic analyses of (i) the internal transcribed spacer sequences (ITS1 and ITS2) of ribosomal RNA (rRNA), (ii) a part of the gene tef-1α and (iii) the total DNA fingerprints of each strain established by amplified fragment length polymorphism (AFLP). The determination of the AGs of R. solani based on the sequencing of the ITS region showed three different AGs among our collection (60 AG 3 PT, 8 AG 2-1 and 5 AG 5). Grouping of the strains belonging to the same AG was confirmed by sequencing of the gene tef-1α used for the first time to study the genetic diversity of R. solani. About 42% of ITS sequences and 72% of tef-1α sequences contained polymorphic sites, suggesting that the cells of R. solani strains contain several copies of ITS and the tef-1α gene within the same nucleus or between different nuclei. Phylogenetic trees showed a greater genetic diversity within AGs in tef-1α sequences than in ITS sequences. The AFLP analyses showed an even greater diversity among the strains demonstrating that the French strains of R. solani isolated from potatoes were not a clonal population. Moreover there was no relationship between the geographical origins of the strains or the variety from which they were isolated and their genetic diversity.


Asunto(s)
Variación Genética , Rhizoctonia/genética , Solanum tuberosum/microbiología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Secuencia de Bases , ADN Espaciador Ribosómico , Francia , Datos de Secuencia Molecular , Filogenia
13.
Biology (Basel) ; 10(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34681138

RESUMEN

The present study investigated the effect of low stocking density on growth, survival, feed parameters and physiological responses (blood metabolites, welfare indicators, immune biomarkers, and transcriptomic responses of stress and immune-related genes) on juvenile rainbow trout (Oncorhynchus mykiss) reared under a recirculating aquaculture system during 12 weeks. Fish (average weight 29.64 g) were reared in triplicate under four initial densities: nine fish per tank (D9, 3.76 ± 0.06 kg/m3), 18 fish per tank (D18, 7.66 ± 0.18 kg/m3), 27 fish per tank (D27, 9.67 ± 0.01 kg/m3) and 36 fish per tank (D36, 12.94 ± 0.14 kg/m3). Results showed that lower stocking density D9 significantly altered survival with several fish dying during the experiment and an alteration of growth and feed efficiency for the remaining fish. In parallel, the study revealed that low stocking density induced a chronic stress altering the physiological responses of trout by dysregulation of the inflammatory, immune system, and indolamine/catecholamine brain levels. In conclusion, regarding all the variables observed, low stocking density (D9) alters survival, growth and feed efficiency of rainbow trout with alteration of their physiological responses. Selecting appropriate fish density relating to rearing conditions proved to be an essential concern to improve welfare in an aquaculture context.

14.
Biology (Basel) ; 10(7)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202225

RESUMEN

It is now recognized that parental diets could highly affect offspring metabolism and growth. Studies in fish are, however, lacking. In particular, the effect of a parental diet high in carbohydrate (HC) and low in protein (LP) on progeny has never been examined in higher trophic level teleost fish. Thus, two-year old male and female rainbow trout (Oncorhynchus mykiss) were fed either a control diet (0% carbohydrate and 63.89% protein) or a diet containing 35% carbohydrate and 42.96% protein (HC/LP) for a complete reproductive cycle for females and over a 5-month period for males. Cross-fertilizations were then carried out. To evaluate the effect of the parental diet on their offspring, different phenotypic and metabolic traits were recorded for offspring before their first feeding and again three weeks later. When considering the paternal and maternal HC/LP nutrition independently, fry phenotypes and transcriptomes were only slightly affected. The combination of the maternal and paternal HC/LP diets altered the energy metabolism and mitochondrial dynamics of their progeny, demonstrating the existence of a synergistic effect. The global DNA methylation of whole fry was also highly affected by the HC/LP parental diet, indicating that it could be one of the fundamental mechanisms responsible for the effects of nutritional programming.

15.
Life (Basel) ; 10(8)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722369

RESUMEN

Selenium is an essential micronutrient and its metabolism is closely linked to the methionine cycle and transsulfuration pathway. The present study evaluated the effect of two different selenium supplements in the diet of rainbow trout (Onchorhynchus mykiss) broodstock on the one-carbon metabolism and the hepatic DNA methylation pattern in the progeny. Offspring of three parental groups of rainbow trout, fed either a control diet (NC, basal Se level: 0.3 mg/kg) or a diet supplemented with sodium selenite (SS, 0.8 mg Se/kg) or hydroxy-selenomethionine (SO, 0.7 mg Se/kg), were collected at swim-up fry stage. Our findings suggest that parental selenium nutrition impacted the methionine cycle with lower free methionine and S-adenosylmethionine (SAM) and higher methionine synthase (mtr) mRNA levels in both selenium-supplemented treatments. DNA methylation profiling by reduced representation bisulfite sequencing (RRBS) identified differentially methylated cytosines (DMCs) in offspring livers. These DMCs were related to 6535 differentially methylated genes in SS:NC, 6890 in SO:NC and 7428 in SO:SS, respectively. Genes with the highest methylation difference relate, among others, to the neuronal or signal transmitting and immune system which represent potential targets for future studies.

16.
Sci Rep ; 5: 9697, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25894103

RESUMEN

N2O is a powerful greenhouse gas contributing both to global warming and ozone depletion. While fungi have been identified as a putative source of N2O, little is known about their production of this greenhouse gas. Here we investigated the N2O-producing ability of a collection of 207 fungal isolates. Seventy strains producing N2O in pure culture were identified. They were mostly species from the order Hypocreales order-particularly Fusarium oxysporum and Trichoderma spp.-and to a lesser extent species from the orders Eurotiales, Sordariales, and Chaetosphaeriales. The N2O (15)N site preference (SP) values of the fungal strains ranged from 15.8‰ to 36.7‰, and we observed a significant taxa effect, with Penicillium strains displaying lower SP values than the other fungal genera. Inoculation of 15 N2O-producing strains into pre-sterilized arable, forest and grassland soils confirmed the ability of the strains to produce N2O in soil with a significant strain-by-soil effect. The copper-containing nitrite reductase gene (nirK) was amplified from 45 N2O-producing strains, and its genetic variability showed a strong congruence with the ITS phylogeny, indicating vertical inheritance of this trait. Taken together, this comprehensive set of findings should enhance our knowledge of fungi as a source of N2O in the environment.


Asunto(s)
Hongos/metabolismo , Óxidos de Nitrógeno/metabolismo , Secuencia de Bases , Biomasa , Cromatografía de Gases , ADN/análisis , Hongos/genética , Hongos/aislamiento & purificación , Datos de Secuencia Molecular , Nitrito Reductasas/clasificación , Nitrito Reductasas/genética , Isótopos de Nitrógeno/química , Óxidos de Nitrógeno/análisis , Óxidos de Nitrógeno/química , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Microbiología del Suelo
17.
Environ Sci Pollut Res Int ; 21(7): 4914-27, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23872892

RESUMEN

The insecticide chlordecone is a contaminant found in most of the banana plantations in the French West Indies. This study aims to search for fungal populations able to grow on it. An Andosol heavily contaminated with chlordecone, perfused for 1 year in a soil-charcoal system, was used to conduct enrichment cultures. A total of 103 fungal strains able to grow on chlordecone-mineral salt medium were isolated, purified, and deposited in the MIAE collection (Microorganismes d'Intérêt Agro-Environnemental, UMR Agroécologie, Institut National de la Recherche Agronomique, Dijon, France). Internal transcribed spacer sequencing revealed that all isolated strains belonged to the Ascomycota phylum and gathered in 11 genera: Metacordyceps, Cordyceps, Pochonia, Acremonium, Fusarium, Paecilomyces, Ophiocordyceps, Purpureocillium, Bionectria, Penicillium, and Aspergillus. Among predominant species, only one isolate, Fusarium oxysporum MIAE01197, was able to grow in a liquid culture medium that contained chlordecone as sole carbon source. Chlordecone increased F. oxysporum MIAE01197 growth rate, attesting for its tolerance to this organochlorine. Moreover, F. oxysporum MIAE01197 exhibited a higher EC50 value than the reference strain F. oxysporum MIAE00047. This further suggests its adaptation to chlordecone tolerance up to 29.2 mg l(-1). Gas chromatography-mass spectrometry (GC-MS) analysis revealed that 40 % of chlordecone was dissipated in F. oxysporum MIAE01197 suspension culture. No chlordecone metabolite was detected by GC-MS. However, weak amount of (14)CO2 evolved from (14)C10-chlordecone and (14)C10-metabolites were observed. Sorption of (14)C10-chlordecone onto fungal biomass followed a linear relationship (r (2) = 0.99) suggesting that it may also account for chlordecone dissipation in F. oxysporum MIAE01197 culture.


Asunto(s)
Clordecona/toxicidad , Farmacorresistencia Fúngica/genética , Hongos/fisiología , Insecticidas/toxicidad , Contaminantes del Suelo/toxicidad , Secuencia de Bases , Biomasa , Clordecona/análisis , Hongos/aislamiento & purificación , Insecticidas/análisis , Datos de Secuencia Molecular , Musa , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis , Indias Occidentales
18.
Fungal Biol ; 114(9): 691-701, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20943179

RESUMEN

The aim of the present study was to characterize sixteen isolates of Trichoderma originating from a field of sugar beet where disease patches caused by Rhizoctonia solani were observed. Use of both molecular and morphological characteristics gave consistent identification of the isolates. Production of water-soluble and volatile inhibitors, mycoparasitism and induced systemic resistance in plant host were investigated using in vitro and in vivo tests in both sterilized and natural soils. This functional approach revealed the intra-specific diversity as well as biocontrol potential of the different isolates. Different antagonistic mechanisms were evident for different strains. The most antagonistic strain, T30 was identified as Trichoderma gamsii. This is the first report of an efficient antagonistic strain of T. gamsii being able to reduce the disease in different conditions. The ability to produce water-soluble inhibitors or coil around the hyphae of the pathogen in vitro was not related to the disease reduction in vivo. Additionally, the strains collected from the high disease areas in the field were better antagonists. The antagonistic activity was not characteristic of a species but that of a population.


Asunto(s)
Antibiosis , Beta vulgaris/microbiología , Enfermedades de las Plantas/microbiología , Rhizoctonia/fisiología , Trichoderma/aislamiento & purificación , Trichoderma/fisiología , Datos de Secuencia Molecular , Control Biológico de Vectores , Microbiología del Suelo , Trichoderma/clasificación , Trichoderma/genética
19.
Luminescence ; 18(2): 113-21, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12687632

RESUMEN

Filamentous fungi are able to damage and even destroy archival and library materials. Nowadays the conventional method for detecting such micro-organisms is to put them in cultures but such methods are laborious and time-consuming. ATP methodology has been widely applied in other domains and its success on bacteria and yeast has been demonstrated. Several commercial reagent kits are available but they did not give satisfactory results on spores mould. We have elaborated new extraction strategies specific to fungi. A comparison of 42 extraction protocols of ATP from fungal spores was carried out. Extraction at 100 degrees C with DMSO 90% in a Tris-acetate-EDTA buffer proved to be the best method. The viability of cells is estimated by the determination of adenylate energy charge (EC). We applied our method successfully on well-known species such as Aspergillus flavus, A. niger, A. fumigatus, A. versicolor, Neosartorya fischeri, Eurotium chevalieri, Penicillium chrysogenum, Chaetomium globosum and Ulocladium spp. The results suggest that the ATP bioluminescence assay provides a sensitive and time-saving method for detecting viable fungal spores. The validity of the procedure was also tested on spores killed by steam and on spores treated with ethylene oxide. We showed that EC determination could be used for a rapid control of the effectiveness of a disinfection process performed with ethylene oxide.


Asunto(s)
Adenosina Trifosfato/análisis , Desinfectantes , Desinfección , Óxido de Etileno , Esporas Fúngicas/química , Algoritmos , Aspergillus/química , Aspergillus niger/química , Calor , Indicadores y Reactivos , Bibliotecas , Papel , Estándares de Referencia , Reproducibilidad de los Resultados , Especificidad de la Especie , Esterilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA