Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(12): 8031-8042, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38478877

RESUMEN

The effects of temperature and chemical environment on a pentanuclear cyanide-bridged, trigonal bipyramidal molecular paramagnet have been investigated. Using element- and oxidation state-specific near-ambient pressure X-ray photoemission spectroscopy (NAP-XPS) to probe charge transfer and second order, nonlinear vibrational spectroscopy, which is sensitive to symmetry changes based on charge (de)localization coupled with DFT, a detailed picture of environmental effects on charge-transfer-induced spin transitions is presented. The molecular cluster, Co3Fe2(tmphen)6(µ-CN)6(t-CN)6, abbrev. Co3Fe2, shows changes in electronic behavior depending on the chemical environment. NAP-XPS shows that temperature changes induce a metal-to-metal charge transfer (MMCT) in Co3Fe2 between a Co and Fe center, while cycling between ultrahigh vacuum and 2 mbar of water at constant temperature causes oxidation state changes not fully captured by the MMCT picture. Sum frequency generation vibrational spectroscopy (SFG-VS) probes the role of the cyanide ligand, which controls the electron (de)localization via the superexchange coupling. Spectral shifts and intensity changes indicate a change from a charge delocalized, Robin-Day class II/III high spin state to a charge-localized, class I low spin state consistent with DFT. In the presence of a H-bonding solvent, the complex adopts a localized electronic structure, while removal of the solvent delocalizes the charges and drives an MMCT. This change in Robin-Day classification of the complex as a function of chemical environment results in reversible switching of the dipole moment, analogous to molecular multiferroics. These results illustrate the important role of the chemical environment and solvation on underlying charge and spin transitions in this and related complexes.

2.
J Chem Inf Model ; 64(9): 3912-3922, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38648614

RESUMEN

In constructing finite models of enzyme active sites for quantum-chemical calculations, atoms at the periphery of the model must be constrained to prevent unphysical rearrangements during geometry relaxation. A simple fixed-atom or "coordinate-lock" approach is commonly employed but leads to undesirable artifacts in the form of small imaginary frequencies. These preclude evaluation of finite-temperature free-energy corrections, limiting thermochemical calculations to enthalpies only. Full-dimensional vibrational frequency calculations are possible by replacing the fixed-atom constraints with harmonic confining potentials. Here, we compare that approach to an alternative strategy in which fixed-atom contributions to the Hessian are simply omitted. While the latter strategy does eliminate imaginary frequencies, it tends to underestimate both the zero-point energy and the vibrational entropy while introducing artificial rigidity. Harmonic confining potentials eliminate imaginary frequencies and provide a flexible means to construct active-site models that can be used in unconstrained geometry relaxations, affording better convergence of reaction energies and barrier heights with respect to the model size, as compared to models with fixed-atom constraints.


Asunto(s)
Dominio Catalítico , Teoría Cuántica , Vibración , Modelos Moleculares , Enzimas/química , Enzimas/metabolismo , Modelos Químicos , Termodinámica
3.
Phys Chem Chem Phys ; 26(5): 3755-3794, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38226636

RESUMEN

Time-dependent density functional theory (TD-DFT) is the most widely-used electronic structure method for excited states, due to a favorable combination of low cost and semi-quantitative accuracy in many contexts, even if there are well recognized limitations. This Perspective describes various ways in which excited states from TD-DFT calculations can be visualized and analyzed, both qualitatively and quantitatively. This includes not just orbitals and densities but also well-defined statistical measures of electron-hole separation and of Frenkel-type exciton delocalization. Emphasis is placed on mathematical connections between methods that have often been discussed separately. Particular attention is paid to charge-transfer diagnostics, which provide indicators of when TD-DFT may not be trustworthy due to its categorical failure to describe long-range electron transfer. Measures of exciton size and charge separation that are directly connected to the underlying transition density are recommended over more ad hoc metrics for quantifying charge-transfer character.

4.
J Chem Phys ; 158(9): 094111, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36889976

RESUMEN

Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These include a "full core hole" (or "ΔSCF") approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater's transition concept in which the binding energy is estimated from an orbital energy level that is obtained from a fractional-occupancy SCF calculation. A generalization that uses two different fractional-occupancy SCF calculations is also considered. The best of the Slater-type methods afford mean errors of 0.3-0.4 eV with respect to experiment for a dataset of K-shell ionization energies, a level of accuracy that is competitive with more expensive many-body techniques. An empirical shifting procedure with one adjustable parameter reduces the average error below 0.2 eV. This shifted Slater transition method is a simple and practical way to compute core-level binding energies using only initial-state Kohn-Sham eigenvalues. It requires no more computational effort than ΔSCF and may be especially useful for simulating transient x-ray experiments where core-level spectroscopy is used to probe an excited electronic state, for which the ΔSCF approach requires a tedious state-by-state calculation of the spectrum. As an example, we use Slater-type methods to model x-ray emission spectroscopy.

5.
J Chem Phys ; 159(17)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37921253

RESUMEN

The many-body expansion lies at the heart of numerous fragment-based methods that are intended to sidestep the nonlinear scaling of ab initio quantum chemistry, making electronic structure calculations feasible in large systems. In principle, inclusion of higher-order n-body terms ought to improve the accuracy in a controllable way, but unfavorable combinatorics often defeats this in practice and applications with n ≥ 4 are rare. Here, we outline an algorithm to overcome this combinatorial bottleneck, based on a bottom-up approach to energy-based screening. This is implemented within a new open-source software application ("Fragme∩t"), which is integrated with a lightweight semi-empirical method that is used to cull subsystems, attenuating the combinatorial growth of higher-order terms in the graph that is used to manage the calculations. This facilitates applications of unprecedented size, and we report four-body calculations in (H2O)64 clusters that afford relative energies within 0.1 kcal/mol/monomer of the supersystem result using less than 10% of the unique subsystems. We also report n-body calculations in (H2O)20 clusters up to n = 8, at which point the expansion terminates naturally due to screening. These are the largest n-body calculations reported to date using ab initio electronic structure theory, and they confirm that high-order n-body terms are mostly artifacts of basis-set superposition error.

6.
Acc Chem Res ; 54(19): 3679-3690, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34550669

RESUMEN

Although sometimes derided as "weak" interactions, non-covalent forces play a critical role in ligand binding and crystal packing and in determining the conformational landscape of flexible molecules. Symmetry-adapted perturbation theory (SAPT) provides a framework for accurate ab initio calculation of intermolecular interactions and furnishes a natural decomposition of the interaction energy into physically meaningful components: semiclassical electrostatics (rigorously obtained from monomer charge densities), Pauli or steric repulsion, induction (including both polarization and charge transfer), and dispersion. This decomposition helps to foster deeper understanding of non-covalent interactions and can be used to construct transferable, physics-based force fields. Separability of the SAPT interaction energy also provides the flexibility to construct composite methods, a feature that we exploit to improve the description of dispersion interactions. These are challenging to describe accurately because they arise from nonlocal electron correlation effects that appear for the first time at second order in perturbation theory but are not quantitatively described at that level.As with all quantum-chemical methods, a major limitation of SAPT is nonlinear scaling of the computational cost with respect to system size. This cost can be significantly mitigated using "SAPT0(KS)", which incorporates monomer electron correlation by means of Kohn-Sham (KS) molecular orbitals from density functional theory (DFT), as well as by an "extended" theory called XSAPT, developed by the authors. XSAPT generalizes traditional dimer SAPT to many-body systems, so that a ligand-protein interaction (for example) can be separated into contributions from individual amino acids, reducing the cost of the calculation below that of even supramolecular DFT while retaining the accuracy of high-level ab initio quantum chemistry.This Account provides an overview of the SAPT0(KS) approach and the XSAPT family of methods. Several low-cost variants are described that provide accuracy approaching that of the best ab initio benchmarks yet are affordable enough to tackle ligand-protein binding and sizable host-guest complexes. These variants include SAPT+aiD, which uses ab initio atom-atom dispersion potentials ("+aiD") in place of second-order SAPT dispersion, and also SAPT+MBD, which incorporates many-body dispersion (MBD) effects that are important in the description of nanoscale materials. Applications to drug binding highlight the size-extensive nature of dispersion, which is not a weak interaction in large systems. Other applications highlight how a physics-based analysis can sometimes upend conventional wisdom regarding intermolecular forces. In particular, careful reconsideration of π-π interactions makes clear that the quadrupolar electrostatics (or "Hunter-Sanders") model of π-π stacking should be replaced by a "van der Waals model" in which conformational preferences arise from a competition between dispersion and Pauli repulsion. Our analysis also suggests that molecular shape, rather than aromaticity per se, is the key factor driving strong stacking interactions. Looking forward, we anticipate that XSAPT-based methods can play a role in screening of drug candidates and in materials design.

7.
J Anim Ecol ; 91(4): 819-830, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35118651

RESUMEN

During long-distance spring migrations, birds may rest and refuel at numerous stopover sites while minimizing the time to reach the breeding grounds. If habitat is limited along the migration route, pre-breeding birds optimize flight range by having longer stopovers at higher quality sites compared to poorer quality sites. Stopover duration also depends on distance remaining to breeding grounds, ecological barriers and individual characteristics. We assessed spring migration tactics and connectivity of a Nearctic-Neotropical migratory shorebird, the semipalmated sandpiper Calidris pusilla, at two sites with known relative habitat quality on the northern Gulf of Mexico (NGOM) coast, the first land encountered after crossing the Gulf of Mexico (GOM). We used automated radio telemetry (Motus) to estimate stopover duration and probability of departure. Migration speed was estimated for individuals detected at subsequent receivers on the Motus network. To measure migratory connectivity, we used morphometrics and the Motus network to assign general breeding regions. Additionally, feather stable isotope ratios of C and N provided coarse information about overwintering regions. Stopover duration declined with higher fuel loads at capture as expected under a time-minimizing strategy. After accounting for fuel load, stopover duration was approximately 40% longer at the higher quality site. We found no detectable effect of age, sex or breeding location on stopover behaviour. The probability of departure was strongly affected by humidity and also by tailwind and weather conditions. Birds stopping at the higher quality site had earlier apparent arrival to the breeding grounds. The Louisiana coast is an apparent stopover hub for this species, since the individuals were departing to range-wide breeding regions and isotope values suggested birds were also using widespread wintering regions. Our study shows how high-quality, coastal wetlands along the NGOM coast serve a critical role in the annual cycle of a migratory shorebird. Stopover behaviour indicated that high-quality habitat may be limited for this species during spring migration. As threats to the GOM coast increase, protection of these already limited wetlands is vitally important.


Asunto(s)
Migración Animal , Charadriiformes , Animales , Aves , Estaciones del Año , Tiempo (Meteorología)
8.
J Chem Phys ; 156(20): 204123, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35649850

RESUMEN

High harmonic spectra for H2 and H2 + are simulated by solving the time-dependent Kohn-Sham equation in the presence of a strong laser field using an atom-centered Gaussian representation of the density and a complex absorbing potential. The latter serves to mitigate artifacts associated with the finite extent of the basis functions, including spurious reflection of the outgoing electronic wave packet. Interference between the outgoing and reflected waves manifests as peak broadening in the spectrum as well as the appearance of spurious high-energy peaks after the harmonic progression has terminated. We demonstrate that well-resolved spectra can be obtained through the use of an atom-centered absorbing potential. As compared to grid-based algorithms, the present approach is more readily extensible to larger molecules.

9.
J Chem Phys ; 156(19): 194110, 2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35597663

RESUMEN

The restricted active space spin-flip (RAS-SF) formalism is a particular form of single-reference configuration interaction that can describe some forms of strong correlation at a relatively low cost and which has recently been formulated for the description of charge-transfer excited states. Here, we introduce both equilibrium and nonequilibrium versions of a state-specific solvation correction for vertical transition energies computed using RAS-SF wave functions, based on the framework of a polarizable continuum model (PCM). Ground-state polarization is described using the solvent's static dielectric constant and in the nonequilibrium solvation approach that polarization is modified upon vertical excitation using the solvent's optical dielectric constant. Benchmark calculations are reported for well-studied models of photo-induced charge transfer, including naphthalene dimer, C2H4⋯C2F4, pentacene dimer, and perylene diimide (PDI) dimer, several of which are important in organic photovoltaic applications. For the PDI dimer, we demonstrate that the charge-transfer character of the excited states is enhanced in the presence of a low-dielectric medium (static dielectric constant ɛ0 = 3) as compared to a gas-phase calculation (ɛ0 = 1). This stabilizes mechanistic traps for singlet fission and helps to explain experimental singlet fission rates. We also examine the effects of nonequilibrium solvation on charge-separated states in an intramolecular singlet fission chromophore, where we demonstrate that the energetic ordering of the states changes as a function of solvent polarity. The RAS-SF + PCM methodology that is reported here provides a framework to study charge-separated states in solution and in photovoltaic materials.

10.
Forensic Sci Med Pathol ; 18(2): 133-140, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35094290

RESUMEN

PURPOSE: Much of the responsibility for the increasing drug overdoses in the US has been attributed to opioids but most opioid overdoses also involve another drug. The objective of this study was to identify the drugs involved in polysubstance arrests. The substances that were more likely to be found in conjunction with other substances, using the drug arrests reported to Maine's Diversion Alert Program (DAP) were examined. METHODS: Single and multiple drug arrests were quantified (N = 9,216). Multiple drug arrest percentages were compared to single drug arrest percentages to create a Multiple-to-Single Ratio (MSR) specific to each drug family and each drug to identify over (MSR > 1) and under-representation (MSR < 1). RESULTS: Over three-fifths (63.8%) of all arrests involved a single drug. Opioids accounted for over-half (53.5%) of single arrests, followed by stimulants (27.7%) and hallucinogens (7.7%). Similarly, nearly two-fifths (39.6%) of multiple arrests were for opioids, followed by stimulants (30.8%) and miscellaneous (13.0%). Miscellaneous psychoactive prescription substances (e.g. clonidine, gabapentin, cyclobenzaprine, hydroxyzine) had the highest (1.51) MSR of any drug family. Conversely, stimulants (0.63), opioids (0.42), and hallucinogens (0.35) were significantly underrepresented in polysubstance arrests. Carisoprodol (8.80), amitriptyline (6.34), and quetiapine (4.69) had the highest MSR. Bath-salts (0.34), methamphetamine (0.44), and oxycodone (0.54) had the lowest MSR. CONCLUSION: The misuse of opioids, both alone and in conjunction with another drug, deserves continued surveillance. In addition, common prescription drugs with less appreciated misuse potential, especially carisoprodol, amitriptyline, and quetiapine, require greater attention for their ability to enhance the effects of other drugs.


Asunto(s)
Carisoprodol , Estimulantes del Sistema Nervioso Central , Sobredosis de Droga , Alucinógenos , Mal Uso de Medicamentos de Venta con Receta , Amitriptilina , Analgésicos Opioides , Sobredosis de Droga/epidemiología , Humanos , Maine/epidemiología , Fumarato de Quetiapina
11.
J Am Chem Soc ; 143(27): 10189-10202, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34184532

RESUMEN

Liquid microjet photoelectron spectroscopy is an increasingly common technique to measure vertical ionization energies (VIEs) of aqueous solutes, but the interpretation of these experiments is subject to questions regarding sensitivity to bulk versus interfacial solvation environments. We have computed aqueous-phase VIEs for a set of inorganic anions, using a combination of molecular dynamics simulations and electronic structure calculations, with results that are in excellent agreement with experiment regardless of whether the simulation data are restricted to ions at the air/water interface or to those in bulk aqueous solution. Although the computed VIEs are sensitive to ion-water hydrogen bonding, we find that the short-range solvation structure is sufficiently similar in both environments that it proves impossible to discriminate between the two on the basis of the VIE, a conclusion that has important implications for the interpretation of liquid-phase photoelectron spectroscopy. More generally, analysis of the simulation data suggests that the surface activity of soft anions is largely a second or third solvation shell effect, arising from disruption of water-water hydrogen bonds and not from significant changes in first-shell anion-water hydrogen bonding.

12.
J Phys Chem A ; 125(33): 7125-7137, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34388340

RESUMEN

Multipole moments such as charge, dipole, and quadrupole are often invoked to rationalize intermolecular phenomena, but a low-order multipole expansion is rarely a valid description of electrostatics at the length scales that characterize nonbonded interactions. This is illustrated by examining several common misunderstandings rooted in erroneous electrostatic arguments. First, the notion that steric repulsion originates in Coulomb interactions is easily disproved by dissecting the interaction potential for Ar2. Second, the Hunter-Sanders model of π-π interactions, which is based on quadrupolar electrostatics, is shown to have no basis in accurate calculations. Third, curved "buckybowls" exhibit unusually large dipole moments, but these are ancillary to the forces that control their intermolecular interactions, as illustrated by two examples involving corannulene. Finally, the assumption that interactions between water and small anions are dictated by the dipole moment of H2O is shown to be false in the case of binary halide-water complexes. These examples present a compelling case that electrostatic explanations based on low-order multipole moments are very often counterfactual for nonbonded interactions at close range and should not be taken seriously in the absence of additional justification.

13.
J Phys Chem A ; 125(5): 1243-1256, 2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33502859

RESUMEN

Binary halide-water complexes X-(H2O) are examined by means of symmetry-adapted perturbation theory, using charge-constrained promolecular reference densities to extract a meaningful charge-transfer component from the induction energy. As is known, the X-(H2O) potential energy surface (for X = F, Cl, Br, or I) is characterized by symmetric left and right hydrogen bonds separated by a C2v-symmetric saddle point, with a tunneling barrier height that is <2 kcal/mol except in the case of F-(H2O). Our analysis demonstrates that the charge-transfer energy is correspondingly small (<2 kcal/mol except for X = F), considerably smaller than the electrostatic interaction energy. Nevertheless, charge transfer plays a crucial role determining the conformational preferences of X-(H2O) and provides a driving force for the formation of quasi-linear X··· H-O hydrogen bonds. Charge-transfer energies correlate well with measured O-H vibrational redshifts for the halide-water complexes and also for OH-(H2O) and NO2-(H2O), providing some indication of a general mechanism.

14.
J Chem Phys ; 155(3): 034103, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34293871

RESUMEN

Long considered a failure, second-order symmetry-adapted perturbation theory (SAPT) based on Kohn-Sham orbitals, or SAPT0(KS), can be resurrected for semiquantitative purposes using long-range corrected density functionals whose asymptotic behavior is adjusted separately for each monomer. As in other contexts, correct asymptotic behavior can be enforced via "optimal tuning" based on the ionization energy theorem of density functional theory, but the tuning procedure is tedious, expensive for large systems, and comes with a troubling dependence on system size. Here, we show that essentially identical results are obtained using a fast, convenient, and automated tuning procedure based on the size of the exchange hole. In conjunction with "extended" (X)SAPT methods that improve the description of dispersion, this procedure achieves benchmark-quality interaction energies, along with the usual SAPT energy decomposition, without the hassle of system-specific tuning.

15.
J Chem Phys ; 155(12): 124111, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34598550

RESUMEN

Nonadiabatic trajectory surface hopping simulations are reported for trans-C5H6NH2 +, a model of the rhodopsin chromophore, using the augmented fewest-switches algorithm. Electronic structure calculations were performed using time-dependent density functional theory (TDDFT) in both its conventional linear-response (LR) and its spin-flip (SF) formulations. In the SF-TDDFT case, spin contamination in the low-lying singlet states is removed by projecting out the lowest triplet component during iterative solution of the TDDFT eigenvalue problem. The results show that SF-TDDFT qualitatively describes the photoisomerization of trans-C5H6NH2 +, with favorable comparison to previous studies using multireference electronic structure methods. In contrast, conventional LR-TDDFT affords qualitatively different photodynamics due to an incorrect excited-state potential surface near the Franck-Condon region. In addition, the photochemistry (involving pre-twisting of the central double bond) appears to be different for SF- and LR-TDDFT, which may be a consequence of different conical intersection topographies afforded by these two methods. The present results contrast with previous surface-hopping studies suggesting that the LR-TDDFT method's incorrect topology around S1/S0 conical intersections is immaterial to the photodynamics.

16.
Molecules ; 26(21)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34771133

RESUMEN

Soft anions exhibit surface activity at the air/water interface that can be probed using surface-sensitive vibrational spectroscopy, but the structural implications of this surface activity remain a matter of debate. Here, we examine the nature of anion-water interactions at the air/water interface using a combination of molecular dynamics simulations and quantum-mechanical energy decomposition analysis based on symmetry-adapted perturbation theory. Results are presented for a set of monovalent anions, including Cl-, Br-, I-, CN-, OCN-, SCN-, NO2-, NO3-, and ClOn- (n=1,2,3,4), several of which are archetypal examples of surface-active species. In all cases, we find that average anion-water interaction energies are systematically larger in bulk water although the difference (with respect to the same quantity computed in the interfacial environment) is well within the magnitude of the instantaneous fluctuations. Specifically for the surface-active species Br-(aq), I-(aq), ClO4-(aq), and SCN-(aq), and also for ClO-(aq), the charge-transfer (CT) energy is found to be larger at the interface than it is in bulk water, by an amount that is greater than the standard deviation of the fluctuations. The Cl-(aq) ion has a slightly larger CT energy at the interface, but NO3-(aq) does not; these two species are borderline cases where consensus is lacking regarding their surface activity. However, CT stabilization amounts to <20% of the total induction energy for each of the ions considered here, and CT-free polarization energies are systematically larger in bulk water in all cases. As such, the role of these effects in the surface activity of soft anions remains unclear. This analysis complements our recent work suggesting that the short-range solvation structure around these ions is scarcely different at the air/water interface from what it is in bulk water. Together, these observations suggest that changes in first-shell hydration structure around soft anions cannot explain observed surface activities.

17.
Phys Chem Chem Phys ; 22(47): 27829-27844, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33245735

RESUMEN

The presence of a hemibond in the local solvation structure of the aqueous hydroxyl radical has long been debated, as its appearance in ab initio simulations based on density functional theory is sensitive to self-interaction error (favoring a two-center, three-electron hemibond) but also to finite-size effects. Simulations reported here use a mixed quantum mechanics/molecular mechanics (QM/MM) framework in a very large periodic simulation cell, in order to avoid finite-size artifacts and to facilitate testing of various density functionals, in order to probe the effects of delocalization error. The preponderance of hemibonded structures predicted by generalized gradient approximations persists in simulations using the hybrid functionals B3LYP and PBE0, but is reduced to a minor population if the fraction of exact exchange is increased to 50%. The hemibonded population is also small in simulations employing the long-range corrected functional LRC-ωPBE. Electronic spectra are computed using time-dependent density functional theory, and from these calculations emerges a consensus picture in which hemibonded configurations play an outsized role in the absorption spectrum, even when present as a minority species. An intense 1b2(H2O) → 2pπ(˙OH) charge-transfer transition in hemibonded configurations of the radical proves to be responsible for an absorption feature at 230 nm that is strongly shifted with respect to the gas-phase absorption at 307 nm, but this intense feature is substantially diminished in aqueous geometries where the hemibond is absent. Although not yet sufficient to quantitatively establish the population of hemibonded ˙OH(aq), these simulations do suggest that its presence is revealed by the strongly shifted ultraviolet absorption spectrum of the aqueous radical.

18.
Phys Chem Chem Phys ; 22(43): 24870-24886, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33107520

RESUMEN

The nature of π-π interactions has long been debated. The term "π-stacking" is considered by some to be a misnomer, in part because overlapping π-electron densities are thought to incur steric repulsion, and the physical origins of the widely-encountered "slip-stacked" motif have variously been attributed to either sterics or electrostatics, in competition with dispersion. Here, we use quantum-mechanical energy decomposition analysis to investigate π-π interactions in supramolecular complexes of polycyclic aromatic hydrocarbons, ranging in size up to realistic models of graphene, and for comparison we perform the same analysis on stacked complexes of polycyclic saturated hydrocarbons, which are cyclohexane-based analogues of graphane. Our results help to explain the short-range structure of liquid hydrocarbons that is inferred from neutron scattering, trends in melting-point data, the interlayer separation of graphene sheets, and finally band gaps and observation of molecular plasmons in graphene nanoribbons. Analysis of intermolecular forces demonstrates that aromatic π-π interactions constitute a unique and fundamentally quantum-mechanical form of non-bonded interaction. Not only do stacked π-π architectures enhance dispersion, but quadrupolar electrostatic interactions that may be repulsive at long range are rendered attractive at the intermolecular distances that characterize π-stacking, as a result of charge penetration effects. The planar geometries of aromatic sp2 carbon networks lead to attractive interactions that are "served up on a molecular pizza peel", and adoption of slip-stacked geometries minimizes steric (rather than electrostatic) repulsion. The slip-stacked motif therefore emerges not as a defect induced by electrostatic repulsion but rather as a natural outcome of a conformational landscape that is dominated by van der Waals interactions (dispersion plus Pauli repulsion), and is therefore fundamentally quantum-mechanical in its origins. This reinterpretation of the forces responsible for π-stacking has important implications for the manner in which non-bonded interactions are modeled using classical force fields, and for rationalizing the prevalence of the slip-stacked π-π motif in protein crystal structures.

19.
J Phys Chem A ; 124(31): 6356-6362, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32662999

RESUMEN

Femtosecond stimulated Raman spectroscopy (FSRS) is an ultrafast pump-probe technique designed to elucidate excited-state molecular dynamics by means of vibrational spectroscopy. We present a first-principles protocol for the simulation of FSRS that integrates ab initio molecular dynamics with computational resonance Raman spectroscopy. Theoretical calculations can monitor the time-dependent evolution of specific vibrational modes and thus provide insight into the nature of the motion responsible for the experimental FSRS signal, and we apply this technique to study quaterthiophene derivatives. The S1 state of two different quaterthiophene derivatives relaxes via in-phase and out-of-phase stretching modes whose frequencies are coupled to the dihedral backbone angle, such that the spectral evolution reflects the excited-state relaxation toward a planar conformation. The simulated spectra aid in confirming the experimental assignment of the vibrational modes that are probed in the existing FSRS experiments on quaterthiophenes.

20.
Prev Chronic Dis ; 17: E100, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32886061

RESUMEN

Our study summarizes tax revenue and disbursements from the Navajo Nation Healthy Diné Nation Act of 2014, which included a 2% tax on foods of minimal-to-no nutritional value (junk food tax), the first in the United States and in any sovereign tribal nation. Since the tax was implemented in 2015, its gross revenue has been $7.58 million, including $1,887,323 in 2016, the first full year. Revenue decreased in absolute value by 3.2% in 2017, 1.2% in 2018, and 4.6% in 2019, a significant downward trend (P = .02). Revenue allocated for wellness projects averaged $13,171 annually for each local community, with over 99% successfully disbursed and more rural areas generating significantly less revenue. Our results provide context on expected revenue, decreases over time, and feasibility for tribal and rural communities considering similar policies.


Asunto(s)
Indio Americano o Nativo de Alaska , Alimentos/economía , Valor Nutritivo , Impuestos , Promoción de la Salud , Humanos , Población Rural
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA