Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(32): e2400786, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38506590

RESUMEN

Liquid crystalline elastomers (LCEs) are soft materials that associate order and deformation. Upon deformation, mechanically induced changes order affect entropy and can produce a caloric output (elastocaloric). Elastocaloric effects in materials continue to be considered for functional use as solid state refrigerants. Prior elastocaloric investigations of LCEs and related materials have measured ≈2 °C temperature changes upon deformation (100% strain). Here, the elastocaloric response of LCEs is explored that are prepared with a subambient nematic to isotropic transition temperature. These materials are referred as "isotropic" liquid crystalline elastomers. The LCEs are prepared by a two-step thiol-Michael/thiol-ene reaction. This polymer network chemistry enhances elastic recovery and reduces hysteresis compared to acrylate-based chemistries. The LCEs exhibit appreciable elastocaloric temperature changes upon deformation and recovery (> ± 3 °C, total ΔT of 6 °C) to deformation driven by minimal force (<< 1 MPa). Notably, the strong association of deformation and order and the resulting temperature change attained at low force achieves a responsivity of 14 °C MPa-1 which is seven times greater than natural rubber.

2.
Macromol Rapid Commun ; 42(4): e2000571, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33300207

RESUMEN

This communication describes a novel series of linear and crosslinked polyurethanes (PUs) and their selective depolymerization under mild conditions. Two unique polyols are synthesized bearing unsaturated units in a configuration designed to favor ring-closing metathesis (RCM) to five- and six-membered cycloalkenes. These polyols are co-polymerized with toluene diisocyanate to generate linear PUs and trifunctional hexamethylene- and diphenylmethane-based isocyanates to generate crosslinked PUs. The polyol design is such that the RCM reaction cleaves the backbone of the polymer chain. Upon exposure to dilute solutions of Grubbs' catalyst under ambient conditions, the PUs are rapidly depolymerized to low molecular weight, soluble products bearing vinyl and cycloalkene functionalities. These functionalities enable further re-polymerization by traditional strategies for polymerization of double bonds. It is anticipated that this general approach can be expanded to develop a range of chemically recyclable condensation polymers that are readily depolymerized by orthogonal metathesis chemistry.


Asunto(s)
Alquenos , Poliuretanos , Polimerizacion , Polímeros
3.
ACS Appl Mater Interfaces ; 15(2): 3467-3475, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36598490

RESUMEN

The large, directional stimuli-response of aligned liquid crystalline elastomers (LCEs) could enable functional utility in robotics, medicine, consumer goods, and photonics. The alignment of LCEs has historically been realized via mechanical alignment of a two-stage reaction. Recent reports widely utilize chain extension reactions of liquid crystal monomers (LCM) to form LCEs that are subject to either surface-enforced or mechanical alignment. Here, we prepare LCEs that contain intra-mesogenic supramolecular bonds synthesized via direct free-radical chain transfer photopolymerization processible by a distinctive mechanical alignment mechanism. The LCEs were prepared by the polymerization of a benzoic acid monomer (11OBA), which dimerized to form a liquid crystal monomer, with a diacrylate LCM (C6M). The incorporation of the intra-mesogenic hydrogen bonds increases the achievable nematic order from mechanical programming. Accordingly, LCEs prepared with larger 11OBA concentration exhibit higher magnitude thermomechanical strain values when compared to a LCE containing only covalent bonds. These LCEs can be reprogrammed with heat to return the aligned film to the polydomain state. The LCE can then be subsequently programmed to orient in a different direction. The facile preparation of (re)programmable LCEs with supramolecular bonds opens new avenues for the implementation of these materials as shape deployable elements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA