Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Mol Biol Evol ; 37(4): 982-993, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31822906

RESUMEN

Terrestrial vertebrates have evolved hard skin appendages, such as scales, claws, feathers, and hair that play crucial roles in defense, predation, locomotion, and thermal insulation. The mechanical properties of these skin appendages are largely determined by cornified epithelial components. So-called "hair keratins," cysteine-rich intermediate filament proteins that undergo covalent cross-linking via disulfide bonds, are the crucial structural proteins of hair and claws in mammals and hair keratin orthologs are also present in lizard claws, indicating an evolutionary origin in a hairless common ancestor of amniotes. Here, we show that reptiles and birds have also other cysteine-rich keratins which lack cysteine-rich orthologs in mammals. In addition to hard acidic (type I) sauropsid-specific (HAS) keratins, we identified hard basic (type II) sauropsid-specific (HBS) keratins which are conserved in lepidosaurs, turtles, crocodilians, and birds. Immunohistochemical analysis with a newly made antibody revealed expression of chicken HBS1 keratin in the cornifying epithelial cells of feathers. Molecular phylogenetics suggested that the high cysteine contents of HAS and HBS keratins evolved independently from the cysteine-rich sequences of hair keratin orthologs, thus representing products of convergent evolution. In conclusion, we propose an evolutionary model in which HAS and HBS keratins evolved as structural proteins in epithelial cornification of reptiles and at least one HBS keratin was co-opted as a component of feathers after the evolutionary divergence of birds from reptiles. Thus, cytoskeletal proteins of hair and feathers are products of convergent evolution and evolutionary co-option to similar biomechanical functions in clade-specific hard skin appendages.


Asunto(s)
Evolución Molecular , Queratinas/genética , Vertebrados/genética , Animales , Cisteína , Plumas/química , Filogenia
2.
J Biol Chem ; 291(36): 18991-9005, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27402828

RESUMEN

All-trans-retinoic acid may be an important molecular signal in the postnatal control of eye size. The goal of this study was to identify retinoic acid-binding proteins secreted by the choroid and sclera during visually guided ocular growth. Following photoaffinity labeling with all-trans-[11,12-(3)H]retinoic acid, the most abundant labeled protein detected in the conditioned medium of choroid or sclera had an apparent Mr of 27,000 Da. Following purification and mass spectrometry, the Mr 27,000 band was identified as apolipoprotein A-I. Affinity capture of the radioactive Mr 27,000 band by anti-chick apolipoprotein A-I antibodies confirmed its identity as apolipoprotein A-I. Photoaffinity labeling and fluorescence quenching experiments demonstrated that binding of retinoic acid to apolipoprotein A-I is 1) concentration-dependent, 2) selective for all-trans-retinoic acid, and 3) requires the presence of apolipoprotein A-I-associated lipids for retinoid binding. Expression of apolipoprotein A-I mRNA and protein synthesis were markedly up-regulated in choroids of chick eyes during the recovery from induced myopia, and apolipoprotein A-I mRNA was significantly increased in choroids following retinoic acid treatment. Together, these data suggest that apolipoprotein A-I may participate in a regulatory feedback mechanism with retinoic acid to control the action of retinoic acid on ocular targets during postnatal ocular growth.


Asunto(s)
Apolipoproteína A-I/biosíntesis , Proteínas Aviares/biosíntesis , Coroides/metabolismo , Proteínas del Ojo/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Receptores de Ácido Retinoico/biosíntesis , Tretinoina/farmacología , Animales , Apolipoproteína A-I/química , Proteínas Aviares/química , Pollos , Coroides/química , Proteínas del Ojo/química , Receptores de Ácido Retinoico/química , Tretinoina/química
3.
BMC Evol Biol ; 15: 82, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25947341

RESUMEN

BACKGROUND: Feathers and hair consist of cornified epidermal keratinocytes in which proteins are crosslinked via disulfide bonds between cysteine residues of structural proteins to establish mechanical resilience. Cysteine-rich keratin-associated proteins (KRTAPs) are important components of hair whereas the molecular components of feathers have remained incompletely known. Recently, we have identified a chicken gene, named epidermal differentiation cysteine-rich protein (EDCRP), that encodes a protein with a cysteine content of 36%. Here we have investigated the putative role of EDCRP in the molecular architecture and evolution of feathers. RESULTS: Comparative genomics showed that the presence of an EDCRP gene and the high cysteine content of the encoded proteins are conserved among birds. Avian EDCRPs contain a species-specific number of sequence repeats with the consensus sequence CCDPCQ(K/Q)(S/P)V, thus resembling mammalian cysteine-rich KRTAPs which also contain sequence repeats of similar sequence. However, differences in gene loci and exon-intron structures suggest that EDCRP and KRTAPs have not evolved from a common gene ancestor but represent the products of convergent sequence evolution. mRNA in situ hybridization demonstrated that chicken EDCRP is expressed in the subperiderm layer of the embryonic epidermis and in the barbule cells of growing feathers. This expression pattern supports the hypothesis that feathers are evolutionarily derived from the subperiderm. CONCLUSIONS: The results of this study suggest that convergent sequence evolution of avian EDCRP and mammalian KRTAPs has contributed to independent evolution of feathers and hair, respectively.


Asunto(s)
Proteínas Aviares/genética , Evolución Molecular , Plumas/química , Cabello/química , Proteínas Musculares/genética , Proteínas Proto-Oncogénicas c-myc/genética , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Aves/genética , Aves/metabolismo , Pollos/genética , Plumas/metabolismo , Cabello/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Datos de Secuencia Molecular , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/metabolismo , Alineación de Secuencia
4.
Mol Biol Evol ; 31(12): 3194-205, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25169930

RESUMEN

The evolution of amniotes has involved major molecular innovations in the epidermis. In particular, distinct structural proteins that undergo covalent cross-linking during cornification of keratinocytes facilitate the formation of mechanically resilient superficial cell layers and help to limit water loss to the environment. Special modes of cornification generate amniote-specific skin appendages such as claws, feathers, and hair. In mammals, many protein substrates of cornification are encoded by a cluster of genes, termed the epidermal differentiation complex (EDC). To provide a basis for hypotheses about the evolution of cornification proteins, we screened for homologs of the EDC in non-mammalian vertebrates. By comparative genomics, de novo gene prediction and gene expression analyses, we show that, in contrast to fish and amphibians, the chicken and the green anole lizard have EDC homologs comprising genes that are specifically expressed in the epidermis and in skin appendages. Our data suggest that an important component of the cornified protein envelope of mammalian keratinocytes, that is, loricrin, has originated in a common ancestor of modern amniotes, perhaps during the acquisition of a fully terrestrial lifestyle. Moreover, we provide evidence that the sauropsid-specific beta-keratins have evolved as a subclass of EDC genes. Based on the comprehensive characterization of the arrangement, exon-intron structures and conserved sequence elements of EDC genes, we propose new scenarios for the evolutionary origin of epidermal barrier proteins via fusion of neighboring S100A and peptidoglycan recognition protein genes, subsequent loss of exons and highly divergent sequence evolution.


Asunto(s)
Proteínas Aviares/genética , Evolución Molecular , Proteínas de Reptiles/genética , Secuencias de Aminoácidos , Animales , Proteínas Aviares/metabolismo , Pollos/genética , Epidermis/fisiología , Perfilación de la Expresión Génica , Queratinocitos/metabolismo , Queratinas/genética , Queratinas/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos , Reptiles/genética , Proteínas de Reptiles/metabolismo , Análisis de Secuencia de ADN , Transcripción Genética
5.
BMC Biotechnol ; 15: 109, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26625857

RESUMEN

BACKGROUND: Celiac disease (CD) is a chronic, small intestinal inflammatory disease mediated by dietary gluten and related prolamins. The only current therapeutic option is maintenance of a strict life-long gluten-free diet, which implies substantial burden for CD patients. Different treatment regimes might be feasible, including masking of toxic celiac peptides with blocking antibodies or fragments thereof. The objective of this study was therefore to select and produce a recombinant avian single-chain fragment variable (scFv) directed against peptic-tryptic digested gliadin (PT-Gliadin) and related celiac toxic entities. RESULTS: Gluten-free raised chicken of same age were immunized with PT-Gliadin. Chicken splenic lymphocytes, selected with antigen-coated magnetic beads, served as RNA source for the generation of cDNA. Chicken VH and VL genes were amplified from the cDNA by PCR to generate full-length scFv constructs consisting of VH and VL fragments joined by a linker sequence. ScFv constructs were ligated in a prokaryotic expression vector, which provides a C-terminal hexahistidine tag. ScFvs from several bacterial clones were expressed in soluble form and crude cell lysates screened for binding to PT-Gliadin by ELISA. We identified an enriched scFv motif, which showed reactivity to PT-Gliadin. One selected scFv candidate was expressed and purified to homogeneity. Polyclonal anti-PT-Gliadin IgY, purified from egg yolk of immunized chicken, served as control. ScFv binds in a dose-dependent manner to PT-Gliadin, comparable to IgY. Furthermore, IgY competitively displaces scFv from PT-Gliadin and natural wheat flour digest, indicating a common epitope of scFv and IgY. ScFv was tested for reactivity to different gastric digested dietary grain flours. ScFv detects common and khorasan wheat comparably with binding affinities in the high nanomolar range, while rye is detected to a lesser extent. Notably, barley and cereals which are part of the gluten-free diet, like corn and rice, are not detected by scFv. Similarly, the pseudo-grain amaranth, used as gluten-free alternative, is not targeted by scFv. This data indicate that scFv specifically recognizes toxic cereal peptides relevant in CD. CONCLUSION: ScFv can be of benefit for future CD treatment regimes.


Asunto(s)
Enfermedad Celíaca/prevención & control , Gliadina/metabolismo , Anticuerpos de Cadena Única/metabolismo , Animales , Enfermedad Celíaca/metabolismo , Pollos , Ensayo de Inmunoadsorción Enzimática , Vectores Genéticos , Linfocitos/metabolismo , Unión Proteica , Anticuerpos de Cadena Única/genética
6.
J Biol Chem ; 288(2): 1088-98, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23209291

RESUMEN

During chicken yolk sac (YS) growth, mesodermal cells in the area vasculosa follow the migrating endodermal epithelial cell (EEC) layer in the area vitellina. Ultimately, these cells form the vascularized YS that functions in nutrient transfer to the embryo. How and when EECs, with their apical aspect directly contacting the oocytic yolk, acquire the ability to take up yolk macromolecules during the vitellina-to-vasculosa transition has not been investigated. In addressing these questions, we found that with progressive vascularization, the expression level in EECs of the nutrient receptor triad, LRP2-cubilin-amnionless, changes significantly. The receptor complex, competent for uptake of yolk proteins, is produced by EECs in the area vasculosa but not in the area vitellina. Yolk components endocytosed by LRP2-cubilin-amnionless, preformed and newly formed lipid droplets, and yolk-derived very low density lipoprotein, shown to be efficiently endocytosed and lysosomally processed by EECs, probably provide substrates for resynthesis and secretion of nutrients, such as lipoproteins. In fact, as directly demonstrated by pulse-chase experiments, EECs in the vascularized, but not in the avascular, region efficiently produce and secrete lipoproteins containing apolipoprotein A-I (apoA-I), apoB, and/or apoA-V. In contrast, perilipin 2, a lipid droplet-stabilizing protein, is produced exclusively by the EECs of the area vitellina. These data suggest a differentiation process that orchestrates the vascularization of the developing YS with the induction of yolk uptake and lipoprotein secretion by EECs to ensure embryo nutrition.


Asunto(s)
Diferenciación Celular , Endodermo/química , Saco Vitelino , Animales , Secuencia de Bases , Transporte Biológico , Western Blotting , Embrión de Pollo , Cartilla de ADN , Células Epiteliales/citología , Hibridación in Situ , Reacción en Cadena de la Polimerasa
7.
Nat Commun ; 14(1): 232, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36646694

RESUMEN

Methylation of cytosines is a prototypic epigenetic modification of the DNA. It has been implicated in various regulatory mechanisms across the animal kingdom and particularly in vertebrates. We mapped DNA methylation in 580 animal species (535 vertebrates, 45 invertebrates), resulting in 2443 genome-scale DNA methylation profiles of multiple organs. Bioinformatic analysis of this large dataset quantified the association of DNA methylation with the underlying genomic DNA sequence throughout vertebrate evolution. We observed a broadly conserved link with two major transitions-once in the first vertebrates and again with the emergence of reptiles. Cross-species comparisons focusing on individual organs supported a deeply conserved association of DNA methylation with tissue type, and cross-mapping analysis of DNA methylation at gene promoters revealed evolutionary changes for orthologous genes. In summary, this study establishes a large resource of vertebrate and invertebrate DNA methylomes, it showcases the power of reference-free epigenome analysis in species for which no reference genomes are available, and it contributes an epigenetic perspective to the study of vertebrate evolution.


Asunto(s)
Metilación de ADN , Genoma , Animales , Metilación de ADN/genética , Genoma/genética , Invertebrados/genética , Vertebrados/genética , Vertebrados/metabolismo , Epigénesis Genética , ADN/metabolismo
8.
Sci Rep ; 12(1): 126, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997067

RESUMEN

The growth of skin appendages, such as hair, feathers and scales, depends on terminal differentiation of epidermal keratinocytes. Here, we investigated keratinocyte differentiation in avian scutate scales. Cells were isolated from the skin on the legs of 1-day old chicks and subjected to single-cell transcriptomics. We identified two distinct populations of differentiated keratinocytes. The first population was characterized by mRNAs encoding cysteine-rich keratins and corneous beta-proteins (CBPs), also known as beta-keratins, of the scale type, indicating that these cells form hard scales. The second population of differentiated keratinocytes contained mRNAs encoding cysteine-poor keratins and keratinocyte-type CBPs, suggesting that these cells form the soft interscale epidermis. We raised an antibody against keratin 9-like cysteine-rich 2 (KRT9LC2), which is encoded by an mRNA enriched in the first keratinocyte population. Immunostaining confirmed expression of KRT9LC2 in the suprabasal epidermal layers of scutate scales but not in interscale epidermis. Keratinocyte differentiation in chicken leg skin resembled that in human skin with regard to the transcriptional upregulation of epidermal differentiation complex genes and genes involved in lipid metabolism and transport. In conclusion, this study defines gene expression programs that build scutate scales and interscale epidermis of birds and reveals evolutionarily conserved keratinocyte differentiation genes.


Asunto(s)
Escamas de Animales/metabolismo , Proteínas Aviares/genética , Diferenciación Celular/genética , Pollos/genética , Perfilación de la Expresión Génica , Queratinocitos/metabolismo , Análisis de la Célula Individual , Transcriptoma , Escamas de Animales/citología , Animales , Animales Recién Nacidos , Proteínas Aviares/metabolismo , Pollos/metabolismo , Evolución Molecular , Extremidades , RNA-Seq , Especificidad de la Especie , Transcripción Genética
9.
Biochim Biophys Acta ; 1801(2): 198-204, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19932762

RESUMEN

Recent evidence suggests that scavenger receptor, class B, type I (SR-BI) plays a physiological role in VLDL metabolism. SR-BI was reported to mediate beta-VLDL uptake; however, cellular details of this process are not well characterized. In the present study we show that SR-BI delivers cholesterol derived from beta-VLDL to LDL receptor negative SR-BI over-expressing Chinese Hamster Ovarian cells (ldlA7-SRBI). Cell association of beta-VLDL was approximately 3 times higher after SR-BI over-expression, which was competed by beta-VLDL, but only to a lesser extent by HDL and LDL. Almost all of the associated beta-VLDL was located intracellularly, and therefore could not be released by a 50-fold excess of unlabeled beta-VLDL. beta-VLDL was degraded at a rate of 6 ng beta-VLDL/mg cell protein and hour. In contrast to ldlA7 cells, beta-VLDL association was competed by LDL in cells with a functional LDL receptor like CHO and HepG2 cells, indicating a strong impact of the LDL receptor in beta-VLDL uptake. beta-VLDL degradation was similar to ldlA7-SRBI cells. When beta-VLDL uptake was followed using fluorescence microscopy, beta-VLDL showed a different uptake pattern in SR-BI over-expressing cells, ldlA7-SRBI, compared to LDL receptor containing cells, CHO and HepG2.


Asunto(s)
Antígenos CD36/metabolismo , Lipoproteínas IDL/metabolismo , Receptores de LDL/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Células Hep G2 , Humanos , Lípidos/análisis
10.
Pediatr Res ; 69(3): 237-42, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21135756

RESUMEN

Clusterin, a protein constituent of HDL, was recently shown to bind plasma leptin in vitro and has been proposed to modulate leptin activity. To gain insight into a possible role for plasma clusterin in human obesity, we measured plasma clusterin, leptin, soluble leptin receptor (sObR), and lipoproteins in 70 obese adolescents (12.4 ± 1.6 y; BMI-SD score (SDS-BMI) 2.35 ± 0.47) before and after 3 wk of weight reduction in a dietary camp and in 44 normal weight controls. Binding of plasma leptin to HDL or clusterin was studied using ultracentrifugation and immunoaffinity chromatography. During weight reduction, clusterin decreased from 14.6 ± 4.1 to 10.3 ± 2.9 mg/dL, p < 0.001) in obese adolescents, whereas sObR increased. However, baseline plasma clusterin in obese adolescents did not differ from controls. Clusterin did not correlate with SDS-BMI, weight loss, leptin, or lipoproteins. Only ∼ 1% of plasma leptin was associated with clusterin/apoA-I complexes or with HDL. Our results do not support a role for plasma clusterin as an important leptin-binding protein or modulator of leptin action. The decrease of plasma clusterin during weight reduction may be an effect of the hypocaloric diet rather than being directly linked to weight loss.


Asunto(s)
Clusterina/sangre , Leptina/sangre , Obesidad/sangre , Adolescente , Animales , Niño , Dieta , Humanos , Lipoproteínas HDL/sangre , Receptores de Leptina/sangre , Pérdida de Peso
11.
Proc Natl Acad Sci U S A ; 105(47): 18419-23, 2008 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19001262

RESUMEN

The appearance of hair is one of the main evolutionary innovations in the amniote lineage leading to mammals. The main components of mammalian hair are cysteine-rich type I and type II keratins, also known as hard alpha-keratins or "hair keratins." To determine the evolutionary history of these important structural proteins, we compared the genomic loci of the human hair keratin genes with the homologous loci of the chicken and of the green anole lizard Anolis carolinenis. The genome of the chicken contained one type II hair keratin-like gene, and the lizard genome contained two type I and four type II hair keratin-like genes. Orthology of the latter genes and mammalian hair keratins was supported by gene locus synteny, conserved exon-intron organization, and amino acid sequence similarity of the encoded proteins. The lizard hair keratin-like genes were expressed most strongly in the digits, indicating a role in claw formation. In addition, we identified a novel group of reptilian cysteine-rich type I keratins that lack homologues in mammals. Our data show that cysteine-rich alpha-keratins are not restricted to mammals and suggest that the evolution of mammalian hair involved the co-option of pre-existing structural proteins.


Asunto(s)
Evolución Biológica , Cabello/metabolismo , Queratinas/genética , Reptiles/genética , Animales , Exones , Intrones , Filogenia , Reptiles/clasificación
12.
Genes (Basel) ; 12(2)2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578693

RESUMEN

Scaffoldin, an S100 fused-type protein (SFTP) with high amino acid sequence similarity to the mammalian hair follicle protein trichohyalin, has been identified in reptiles and birds, but its functions are not yet fully understood. Here, we investigated the expression pattern of scaffoldin and cornulin, a related SFTP, in the developing beaks of birds. We determined the mRNA levels of both SFTPs by reverse transcription polymerase chain reaction (RT-PCR) in the beak and other ectodermal tissues of chicken (Gallus gallus) and quail (Coturnix japonica) embryos. Immunohistochemical staining was performed to localize scaffoldin in tissues. Scaffoldin and cornulin were expressed in the beak and, at lower levels, in other embryonic tissues of both chickens and quails. Immunohistochemistry revealed scaffoldin in the peridermal compartment of the egg tooth, a transitory cornified protuberance (caruncle) on the upper beak which breaks the eggshell during hatching. Furthermore, scaffoldin marked a multilayered peridermal structure on the lower beak. The results of this study suggest that scaffoldin plays an evolutionarily conserved role in the development of the avian beak with a particular function in the morphogenesis of the egg tooth.


Asunto(s)
Proteínas Aviares/genética , Pico/metabolismo , Pollos/genética , Coturnix/genética , Plumas/metabolismo , Pezuñas y Garras/metabolismo , Animales , Proteínas Aviares/metabolismo , Pico/citología , Pico/embriología , Evolución Biológica , Embrión de Pollo , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Secuencia Conservada , Coturnix/embriología , Coturnix/metabolismo , Embrión no Mamífero , Epidermis/embriología , Epidermis/metabolismo , Plumas/citología , Plumas/embriología , Regulación del Desarrollo de la Expresión Génica , Pezuñas y Garras/citología , Pezuñas y Garras/embriología , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Mamíferos , Morfogénesis/genética , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
13.
Biochem J ; 420(2): 277-81, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19265508

RESUMEN

LOOHs (lipid hydroperoxides) in oxLDL [oxidized LDL (low-density lipoprotein)] are potentially atherogenic compounds. Recently, H2S was identified as the third endogenous gasotransmitter in the vasculature. H2O2 is known to be destroyed by H2S. Assuming that H2S may also react with LOOHs, the results show that H2S can destroy LOOHs in oxLDL. The ability of LOOH-enriched LDL to induce HO-1 (haem oxygenase 1) in endothelial cells was abolished by H2S pretreatment. HPLC analysis showed that 9-HPODE [(9S)-hydroperoxy-(10E,12Z)-octadecadienoic acid], a compound found in oxLDL, was reduced to 9-HODE [(9S)-hydroxy-(10E,12Z)-octadecadienoic acid] in the presence of H2S. Thus H2S may act as an antiatherogenic agent by reducing LOOHs to the less reactive LOHs and could abrogate the pathobiological activity of oxLDL.


Asunto(s)
Sulfuro de Hidrógeno/farmacología , Peróxidos Lipídicos/metabolismo , Lipoproteínas LDL/metabolismo , Análisis de Varianza , Células Cultivadas , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Humanos , Ácidos Linoleicos/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Malondialdehído/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Factores de Tiempo
14.
Protein Sci ; 29(11): 2175-2188, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32829514

RESUMEN

Usutu virus belongs to the Japanese encephalitis serogroup within the Flaviviridae family. Mammals may become incidental hosts after the bite of an infected mosquito while birds act as the main reservoir. Human cases have become more common recently and elicit various outcomes ranging from asymptomatic to severe illness including encephalitis. Problematically, antisera against Usutu virus cross-react with other flaviviruses such as the co-circulating West Nile virus. As an approach to generate Usutu virus-specific antibodies, we immunized chickens with purified Usutu virus envelope protein domain III, isolated the spleen mRNA and generated an scFv phage display library. The most potent binders for Usutu virus domain III were selected via biopanning and their affinity to domain III was examined using SPR. Four scFvs bound the domain III of Usutu virus in the nanomolar region; two bound the protein over 40 times more strongly than West Nile virus domain III. We further characterized these scFv antibodies for suitability in standard laboratory tests such as western blots, ELISA, and neutralization tests. Four specific and one cross-reactive antibody performed well in western blots with domain III and the full-length envelope protein of Usutu virus and West Nile virus. All antibodies bound in virus ELISA assays to Usutu virus strain Vienna-2001. However, none of the antibodies neutralized either Usutu virus or West Nile virus. These antibody candidates could be crucial in future diagnostic tests to distinguish Usutu virus from other flaviviruses and might even offer virus neutralization after a conversion to Fab or IgG.


Asunto(s)
Anticuerpos Antivirales , Proteínas Aviares , Pollos , Flavivirus , Inmunoglobulinas , Anticuerpos de Cadena Única , Proteínas del Envoltorio Viral , Animales , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Proteínas Aviares/química , Proteínas Aviares/inmunología , Pollos/inmunología , Pollos/virología , Flavivirus/química , Flavivirus/inmunología , Inmunoglobulinas/química , Inmunoglobulinas/inmunología , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/inmunología , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Proteínas del Envoltorio Viral/química
15.
Mol Biol Evol ; 25(5): 831-41, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18281271

RESUMEN

Proteases of the caspase family play central roles in apoptosis and inflammation. Recently, we have described a new gene encoding caspase-15 that has been inactivated independently in different mammalian lineages. To determine the dynamics of gene duplication and loss in the entire caspase gene family, we performed a comprehensive evolutionary analysis of mammalian caspases. By comparative genomics and reverse transcriptase-polymerase chain reaction analyses, we identified 3 novel mammalian caspase genes, which we tentatively named caspases-16 through -18. Caspase-16, which is most similar in sequence to caspase-14, has been conserved in marsupials and placental mammals, including humans. Caspase-17, which is most similar to caspase-3, has been conserved among fish, frog, chicken, lizard, and the platypus but is absent from marsupials and placental mammals. Caspase-18, which is most similar to caspase-8, has been conserved among chicken, platypus, and opossum but is absent from placental mammals. These gene distribution patterns suggest that, in the evolutionary lineage leading to humans, caspase-17 was lost after the split of protherian and therian mammals and caspase-18 was lost after the split of marsupials and placental mammals. In the canine genome, the number of caspases has been reduced by the fusion of the neighboring genes caspases-1 and -4, resulting in a single coding region. Further lineage-specific gene inactivations were found for caspase-10 in murine rodents and caspase-12 in humans, rabbit, and cow. Lineage-specific gene duplications were found for caspases-1, -3, and -12 in opossum and caspase-4 in primates. Other caspases were generally conserved in all mammalian species investigated. Using the positions of introns as stable characters during recent vertebrate evolution, we define 3 phylogenetic clades of caspase genes: caspases-1/-2/-4/-5/-9/-12/-14/-15/-16 (clade I), caspases-3/-6/-7/-17 (clade II), and caspases-8/-10/-18/CFLAR (clade III). We conclude that gene inactivations have occurred in each of the 3 caspase clades and that gene loss has been as critical as gene duplication in the evolution of the human repertoire of caspases.


Asunto(s)
Caspasas/genética , Evolución Molecular , Eliminación de Gen , Mamíferos/genética , Secuencia de Aminoácidos , Animales , Caspasa 3/genética , Caspasa 8/genética , Caspasas/clasificación , Pollos , Bases de Datos Genéticas , Exones , Humanos , Intrones , Datos de Secuencia Molecular , Zarigüeyas , Filogenia , Ornitorrinco , Terminología como Asunto , Vertebrados/genética
16.
Protoplasma ; 256(5): 1257-1265, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31037447

RESUMEN

Feathers are the most complex skin appendages of vertebrates. Mature feathers consist of interconnected dead keratinocytes that are filled with heavily cross-linked proteins. Although the molecular architecture determines essential functions of feathers, only few feather proteins have been characterized with regard to their amino acid sequences and evolution. Here, we identify Epidermal Differentiation protein containing DPCC Motifs (EDDM) as a cysteine-rich protein that has co-evolved with other feather proteins. The EDDM gene is located within the avian epidermal differentiation complex (EDC), a cluster of genes that has originated and diversified in amniotes. EDDM shares the exon-intron organization with EDC genes of other amniotes, including humans, and a gene encoding an EDDM-like protein is present in crocodilians, suggesting that avian EDDM arose by sequence modification of an epidermal differentiation gene present in a common ancestor of archosaurs. The EDDM protein contains multiple sequence repeats and a higher number of cysteine residues than any other protein encoded in the EDC. Immunohistochemical analysis of chicken skin and skin appendages showed expression of EDDM in barb and barbules of feathers as well as in the subperiderm on embryonic scutate scales. These results suggest that the diversification and differential expression of EDDM, besides other EDC genes, was instrumental in facilitating the evolution of the most complex molecular architecture of feathers.


Asunto(s)
Cisteína/metabolismo , Plumas/química , Animales , Aves , Pollos , Humanos
17.
BMC Genomics ; 9: 281, 2008 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-18549477

RESUMEN

BACKGROUND: In oviparous species, genes encoding proteins with functions in lipid remodeling, such as specialized lipases, may have evolved to facilitate the assembly and utilization of yolk lipids by the embryo. The mammalian gene family of patatin-like phospholipases (PNPLAs) has received significant attention, but studies in other vertebrates are lacking; thus, we have begun investigations of PNPLA genes in the chicken (Gallus gallus). RESULTS: We scanned the draft chicken genome using human PNPLA sequences, and performed PCR to amplify and sequence orthologous cDNAs. Full-length cDNA sequences of galline PNPLA2/ATGL, PNPLA4, -7, -8, -9, and the activator protein CGI-58, as well as partial cDNA sequences of avian PNPLA1, -3, and -6 were obtained. The high degree of sequence identities (~50 to 80%) between the avian and human orthologs suggests conservation of important enzymatic functions. Quantitation by qPCR of the transcript levels of PNPLAs and CGI-58 in 21 tissues indicates that expression patterns and levels diverge greatly between species. A particularly interesting tissue in which certain PNPLAs may contribute to physiological specialization is the extraembryonic yolk sac. CONCLUSION: Knowledge about the exact in-vivo functions of PNPLAs in any system is still sparse. Thus, studies about the temporal expression patterns and functions of the enzymes identified here, and of other already known extracellular lipases and co-factors, in the yolk sac and embryonic tissues during embryogenesis are called for. Based on the information obtained, further studies are anticipated to provide important insights of the roles of PNPLAs in the yolk sac and embryo development.


Asunto(s)
Pollos/genética , Fosfolipasas/genética , Fosfolipasas/metabolismo , Secuencia de Aminoácidos , Animales , Biología Computacional , Perfilación de la Expresión Génica , Genoma , Humanos , Metabolismo de los Lípidos , Ratones , Datos de Secuencia Molecular , Oocitos/metabolismo , Fosfolipasas/química , Filogenia , Alineación de Secuencia
18.
Biochimie ; 147: 136-142, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29432786

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is marked by hepatic fat accumulation and reflects a spectrum of chronic liver diseases associated with obesity, impaired insulin sensitivity and dyslipidemia. Apolipoprotein O (ApoO) is a new member of the plasma apolipoprotein family that may play a role in lipid metabolism and electron transport activity of the mitochondrium. However, its physiological functions have not been elucidated yet. Based on our previous data in a non-mammalian experimental system [1], we hypothesized that hepatic expression of ApoO is tightly linked not only to diet-induced hepatosteatosis, but also to increased lipoprotein-production induced by, e.g., hormones and oxidative stress. To gain insight into a mammalian experimental system, we compared the effects of lipid loading on ApoO regulation in chicken hepatoma LMH cells with those in the human hepatoma cell line HepG2. Incubation of the cells with BSA-complexed oleic acid (OA-Alb) induced triglyceride accumulation, but did not affect cell viability. qPCR using specific primer pairs and Western blot analysis with in-house produced rabbit anti-ApoO antisera demonstrated significant increase in ApoO transcript and protein levels in both cell lines. ROS formation due to OA-Alb treatment was only slightly altered in LMH cells, indicating an intact antioxidant defense system of the cells. Oxidative stress applied by addition of H2O2 revealed induction of ApoO transcript and protein level in the same or even higher extent as monitored in the presence of OA-Alb. Upon treatment with estrogen for 24 h quantitative analysis of ApoO transcript and protein revealed increases of ApoO expression supporting the assumption that estrogen affects lipoprotein metabolism at various points. Furthermore, both cell lines showed a significant decrease of the mitochondrial membrane potential upon incubation with OA-Alb. Therefore, we assume that our findings support a role of ApoO as an effector of compromised mitochondrial function that likely accompanies the onset of non-alcoholic fatty liver disease.


Asunto(s)
Apolipoproteínas/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ácido Oléico/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/patología , Animales , Apolipoproteínas/biosíntesis , Apolipoproteínas/genética , Supervivencia Celular/efectos de los fármacos , Pollos , Células Hep G2 , Humanos , Peróxido de Hidrógeno/farmacología , Metaloproteinasas de la Matriz/metabolismo , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
J Hypertens ; 25(10): 2100-4, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17885553

RESUMEN

OBJECTIVE: Beside NO (nitric monoxide) and CO (carbon monoxide), H2S (hydrogen sulfide) has been identified recently as the third gasotransmitter. By acting directly on KATP-channels on smooth muscle cells (SMC) H2S possesses vasorelaxing properties. It has the potential to react with metal ions (i.e. Cu, Fe, Zn) in metalloproteins. Angiotensin-converting enzyme (ACE), responsible for vasoconstriction, is a zinc (Zn) containing enzyme. We therefore hypothesized that H2S may interact with the Zn in the active center of ACE, modulating (inhibiting) enzyme activity. METHODS: ACE activity was measured on the surface of human endothelial cells (HUVECs) monolayers in culture, ex-vivo in umbilical veins and in HUVEC protein extracts. Quantitative real-time polymerase chain reaction (PCR) was used to study the effect of H2S on ACE mRNA expression in HUVECs. RESULTS: H2S inhibited the activity of ACE in HUVEC protein extracts in a dose-dependent manner, and only Zn but not Cd, Ca or Mg could counteract the inhibitory effect. Cell-surface ACE activity was inhibited by H2S on HUVEC monolayers and in ex-vivo umbilical veins. No influence of H2S on ACE mRNA expression was observed. CONCLUSION: H2S exhibits direct inhibitory action on ACE activity in HUVECs, obviously by interfering with the Zn in the active center of the enzyme. Thus, beside the known influence of H2S on SMC KATP-channels, the observed direct ACE inhibitory effect may add to the vasorelaxant effect of H2S in the vasculature by reducing angiotensin II production and inhibiting bradykinin degradation.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Sulfuro de Hidrógeno/farmacología , Peptidil-Dipeptidasa A/metabolismo , Aminoácidos Sulfúricos/farmacología , Secuencia de Bases , Células Cultivadas , Cartilla de ADN/genética , Femenino , Humanos , Técnicas In Vitro , Peptidil-Dipeptidasa A/genética , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Venas Umbilicales/efectos de los fármacos , Venas Umbilicales/enzimología , Vasodilatadores/farmacología , Zinc/farmacología
20.
Free Radic Res ; 41(2): 234-41, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17364950

RESUMEN

Hypericin and pseudohypericin are polycyclic-phenolic structurally related compounds found in Hypericum perforatum L. (St John's wort). As hypericin has been found to bind to LDL one may assume that it can act as antioxidant of LDL lipid oxidation, a property which is of prophylactic/therapeutic interest regarding atherogenesis as LDL oxidation may play a pivotal role in the onset of atherosclerosis. Therefore, in the present paper hypericin, pseudohypericin and hyperforin, an other structurally unrelated constituent in St John's wort were tested in their ability to inhibit LDL oxidation. LDL was isolated by ultracentrifugation and oxidation was initiated either by transition metal ions (copper), tyrosyl radical (myeloperoxidase/hydrogen peroxide/tyrosine) or by endothelial cells (HUVEC). LDL modification was monitored by conjugated diene and malondialdehyde formation. The data show that all compounds (hypericin, pseudohypericin and hyperforin) at doses as low as 2.5 micromol/l are potent antioxidants in the LDL oxidation systems used. The results indicate that the derivatives found in Hypericum perforatum have possible antiatherogenic potential.


Asunto(s)
Antidepresivos/química , Antioxidantes/farmacología , Aterosclerosis/prevención & control , Hypericum/química , Lipoproteínas LDL/efectos de los fármacos , Medicamentos sin Prescripción/química , Perileno/análogos & derivados , Floroglucinol/análogos & derivados , Terpenos/farmacología , Antracenos , Antidepresivos/uso terapéutico , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Compuestos Bicíclicos con Puentes/farmacología , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Depresión/complicaciones , Depresión/tratamiento farmacológico , Depresión/metabolismo , Evaluación Preclínica de Medicamentos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Malondialdehído/análisis , Espectrometría de Masas , Estructura Molecular , Medicamentos sin Prescripción/uso terapéutico , Oxidación-Reducción , Peroxidasa/farmacología , Perileno/farmacología , Floroglucinol/farmacología , Fitoterapia , Unión Proteica , Relación Estructura-Actividad , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Tromboplastina/análisis , Tirosina/metabolismo , Venas Umbilicales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA