Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 19(2)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499163

RESUMEN

Marine plants have become an inexhaustible reservoir of new phytopharmaceuticals for cancer treatment. We demonstrate in vitro/in vivo antitumor efficacy of a standardized polyphenol extract from the marine angiosperm Thalassia testudinum (TTE) in colon tumor cell lines (RKO, SW480, and CT26) and a syngeneic allograft murine colorectal cancer model. MTT assays revealed a dose-dependent decrease of cell viability of RKO, CT26, and SW480 cells upon TTE treatment with IC50 values of, respectively, 175, 115, and 60 µg/mL. Furthermore, TTE significantly prevented basal and bFGF-induced angiogenesis in the chicken chorioallantoic membrane angiogenesis assay. In addition, TTE suppressed bFGF-induced migration of endothelial cells in a wound closure assay. Finally, TTE treatment abrogated CT26 colorectal cancer growth and increased overall organism survival in a syngeneic murine allograft model. Corresponding transcriptome profiling and pathway analysis allowed for the identification of the mechanism of action for the antitumor effects of TTE. In line with our in vitro/in vivo results, TTE treatment triggers ATF4-P53-NFκB specific gene expression and autophagy stress pathways. This results in suppression of colon cancer cell growth, cell motility, and angiogenesis pathways in vitro and in addition promotes antitumor immunogenic cell death in vivo.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Movimiento Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Hydrocharitaceae , Muerte Celular Inmunogénica/efectos de los fármacos , Neovascularización Patológica/patología , Extractos Vegetales/uso terapéutico , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Humanos , Hydrocharitaceae/química , Muerte Celular Inmunogénica/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
2.
Phytother Res ; 33(4): 958-967, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30729585

RESUMEN

The protective effect of the supplementation with an aqueous-ethanolic extract obtained from Ulva lactuca (Delile) green seaweed on benzo[a] pyrene-induced damage in mice was evaluated. Animals were treated with oral doses of U. lactuca extract (100 and 400 mg/kg) for 9 weeks. They were exposed to 50 mg/kg of oral doses of benzo(a)pyrene starting from the second week and up to the fifth week. Groups treated with benzo(a)pyrene only (second to fifth weeks), sunflower oil (vehicle, 9 weeks), or U. lactuca extract (100 and 400 mg/kg, 9 weeks) were also included in the study. The treatment with 400 mg/kg of the extract ameliorated the oxidative damage, decreased IL-1ß and TNF-α levels, and favorably regulated the antioxidant defenses compared with benzo(a)pyrene-exposed group. The benzo(a)pyrene-induced DNA damage was also reduced, as it was evidenced by the lower micronucleus formation in U. lactuca extract-supplemented animals. The extract protected the hepatic tissue, and it reduced the liver activity/expression of CYP1A1. These results altogether suggested a chemoprotective effect of U. lactuca extract against benzo(a)pyrene-induced-toxicity in mice, probably associated with an inhibitory effect of carcinogen bioactivation.


Asunto(s)
Citocromo P-450 CYP1A1/antagonistas & inhibidores , Algas Marinas , Ulva , Animales , Benzo(a)pireno/toxicidad , Suplementos Dietéticos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C
3.
Drug Metab Pers Ther ; 37(2): 141-148, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34860473

RESUMEN

OBJECTIVES: ABCB1 gene polymorphisms can modify P-glycoprotein function with clinical consequences. METHODS: The 3435C>T polymorphism prevalence was analyzed using oligonucleotide probes and next-generation sequencing in 421 unrelated healthy individuals living in Cuba. Data were stratified by gender, ethnic background and residence. The genotype and allelic frequencies were determined. RESULTS: The genotype distribution met the Hardy-Weinberg equilibrium assumption. The allelic frequency was 63.5% for the 3435C variant. The genotype frequencies were 41.1% for CC, 44.9% for CT and 14.0% for TT. The allele and genotype distributions differed between individuals living in La Habana and Santiago de Cuba (p<0.05) when ethnic background was analyzed. The allelic distribution was similar among Admixed and Black subjects, and they differed from Caucasians. The CC genotype was equally distributed among Admixed and Black subjects, and they differed from Caucasians. The TT genotype frequency differed between Caucasians and Admixed. The CT genotype was distributed differently among the three groups. Similar distribution was obtained in Brazilians, whereas some similarities were observed in African, Spanish and Chinese populations, consistent with the mixed Cuban ethnic origin. CONCLUSIONS: This is the first report on allele and genotype frequencies of the 3435C>T polymorphism in Cuba, which may support personalized medicine programs.


Asunto(s)
Polimorfismo de Nucleótido Simple , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Frecuencia de los Genes/genética , Genotipo , Humanos , Polimorfismo de Nucleótido Simple/genética , Prevalencia
4.
Front Pharmacol ; 12: 670167, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34924998

RESUMEN

In spite of the current advances and achievements in cancer treatments, colorectal cancer (CRC) persists as one of the most prevalent and deadly tumor types in both men and women worldwide. Drug resistance, adverse side effects and high rate of angiogenesis, metastasis and tumor relapse remain one of the greatest challenges in long-term management of CRC and urges need for new leads of anticancer drugs. We demonstrate that CRC treatment with the phytopharmaceutical mangiferin (MGF), a glucosylxanthone present in Mango tree stem bark and leaves (Mangifera Indica L.), induces dose-dependent tumor regression and decreases lung metastasis in a syngeneic immunocompetent allograft mouse model of murine CT26 colon carcinoma, which increases overall survival of mice. Antimetastatic and antiangiogenic MGF effects could be further validated in a wound healing in vitro model in human HT29 cells and in a matrigel plug implant mouse model. Interestingly, transcriptome pathway enrichment analysis demonstrates that MGF inhibits tumor growth, metastasis and angiogenesis by multi-targeting of mitochondrial oxidoreductase and fatty acid ß-oxidation metabolism, PPAR, SIRT, NFκB, Stat3, HIF, Wnt and GP6 signaling pathways. MGF effects on fatty acid ß-oxidation metabolism and carnitine palmitoyltransferase 1 (CPT1) protein expression could be further confirmed in vitro in human HT29 colon cells. In conclusion, antitumor, antiangiogenic and antimetastatic effects of MGF treatment hold promise to reduce adverse toxicity and to mitigate therapeutic outcome of colorectal cancer treatment by targeting mitochondrial energy metabolism in the tumor microenvironment.

5.
Melanoma Res ; 30(1): 39-51, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31651714

RESUMEN

Advanced metastatic melanoma, one of the most aggressive skin malignancies, is currently without reliable therapy. The process of angiogenesis is crucial for progression and metastasis of the majority of solid tumors including melanomas. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone which exerts many pharmacological activities against cancer-inflammation. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we demonstrate that mangiferin interferes with inflammation, lipid and calcium signaling which selectively inhibits multiple NFkB target genes including interleukin-6, tumor necrosis factor, interferon gamma, vascular endothelial growth factor receptor 2, plasminogen activator urokinase, matrix metalloprotease 19, C-C Motif Chemokine Ligand 2 and placental growth factor. This abrogates angiogenic and invasive processes and capillary tube formation of metastatic melanoma cells as well as human placental blood vessel explants in-vitro and blocks angiogenesis characteristic of the chicken egg chorioallantoic membrane assay and in melanoma syngeneic studies in vivo. The results obtained in this research illustrate promising anti-angiogenic effects of the natural glucosylxanthone mangiferin for further (pre)clinical studies in melanoma cancer patients.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Xantonas/uso terapéutico , Inhibidores de la Angiogénesis/farmacología , Humanos , Melanoma/patología , Neoplasias Cutáneas/patología , Xantonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA