Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119572, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37659504

RESUMEN

Heterozygous germline variants in ATP1A1, the gene encoding the α1 subunit of the Na+/K+-ATPase (NKA), have been linked to diseases including primary hyperaldosteronism and the peripheral neuropathy Charcot-Marie-Tooth disease (CMT). ATP1A1 variants that cause CMT induce loss-of-function of NKA. This heterodimeric (αß) enzyme hydrolyzes ATP to establish transmembrane electrochemical gradients of Na+ and K+ that are essential for electrical signaling and cell survival. Of the 4 catalytic subunit isoforms, α1 is ubiquitously expressed and is the predominant paralog in peripheral axons. Human population sequencing datasets indicate strong negative selection against both missense and protein-null ATP1A1 variants. To test whether haploinsufficiency generated by heterozygous protein-null alleles are sufficient to cause disease, we tested the neuromuscular characteristics of heterozygous Atp1a1+/- knockout mice and their wildtype littermates, while also evaluating if exercise increased CMT penetrance. We found that Atp1a1+/- mice were phenotypically normal up to 18 months of age. Consistent with the observations in mice, we report clinical phenotyping of a healthy adult human who lacks any clinical features of known ATP1A1-related diseases despite carrying a plasma-membrane protein-null early truncation variant, p.Y148*. Taken together, these results suggest that a malfunctioning gene product is required for disease induction by ATP1A1 variants and that if any pathology is associated with protein-null variants, they may display low penetrance or high age of onset.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , ATPasa Intercambiadora de Sodio-Potasio , Adulto , Animales , Humanos , Ratones , Alelos , Enfermedad de Charcot-Marie-Tooth/genética , Isoformas de Proteínas/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
2.
bioRxiv ; 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-37090550

RESUMEN

Heterozygous germline variants in ATP1A1 , the gene encoding the α1 subunit of the Na + /K + -ATPase (NKA), have been linked to diseases including primary hyperaldosteronism and the peripheral neuropathy Charcot-Marie-Tooth disease (CMT). ATP1A1 variants that cause CMT induce loss-of-function of NKA. This heterodimeric (αß) enzyme hydrolyzes ATP to establish transmembrane electrochemical gradients of Na + and K + that are essential for electrical signaling and cell survival. Of the 4 catalytic subunit isoforms, α1 is ubiquitously expressed and is the predominant paralog in peripheral axons. Human population sequencing datasets indicate strong negative selection against both missense and protein-null ATP1A1 variants. To test whether haploinsufficiency generated by heterozygous protein-null alleles are sufficient to cause disease, we tested the neuromuscular characteristics of heterozygous Atp1a1 +/- knockout mice and their wildtype littermates, while also evaluating if exercise increased CMT penetrance. We found that Atp1a1 +/- mice were phenotypically normal up to 18 months of age. Consistent with the observations in mice, we report clinical phenotyping of a healthy adult human who lacks any clinical features of known ATP1A1 -related diseases despite carrying a protein-null early truncation variant, p.Y148*. Taken together, these results suggest that a malfunctioning gene product is required for disease induction by ATP1A1 variants and that if any pathology is associated with protein-null variants, they may display low penetrance or high age of onset.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA