Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(11): 3509-3522, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37133798

RESUMEN

For a sustainable economy, biodegradable biopolymers polyhydroxyalkanoates (PHA) are desirable substitutes to petroleum-based plastics that contaminate our environment. Medium-chain-length (MCL) PHA bioplastics are particularly interesting due to their thermoplastic properties. To hamper the high cost associated to PHA production, the use of bacterial mixed cultures cultivated in open systems and using cheap resources is a promising strategy. Here, we studied the operating conditions favouring direct MCL accumulation by activated sludge, using oleic acid as a model substrate and phosphorus limitation in fed-batch bioreactors. Our results confirm the presence of PHA-accumulating organisms (PHAAO) in activated sludge able to accumulate MCL from oleic acid. A positive correlation between phosphorus (P) limitation and PHA accumulation was demonstrated, allowing up to 26% PHA/total biomass accumulation, and highlighted its negative impact on the MCL/PHA fraction in the polymer. Diversity analysis through 16S rRNA amplicon sequencing revealed a differential selection of PHAAO according to the P-limitation level. A differential behaviour for the orders Pseudomonadales and Burkholderiales at increasing P-limitation levels was revealed, with a higher abundance of the latter at high levels of P-limitation. The PHA accumulation observed in activated sludge open new perspectives for MCL-PHA production system based on P-limitation strategy applied to mixed microbial communities. KEY POINTS: • Direct accumulation of MCL-PHA in activated sludge was demonstrated. • MCL-PHA content is negatively correlated with P-limitation. • Burkholderiales members discriminate the highest P-limitation levels.


Asunto(s)
Polihidroxialcanoatos , Aguas del Alcantarillado/microbiología , Fósforo , Ácido Oléico , ARN Ribosómico 16S/genética , Biopolímeros , Reactores Biológicos/microbiología
2.
Int J Mol Sci ; 21(10)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32408486

RESUMEN

Eucalypts are the most planted hardwoods worldwide. The availability of the Eucalyptus grandis genome highlighted many genes awaiting functional characterization, lagging behind because of the lack of efficient genetic transformation protocols. In order to efficiently generate knock-out mutants to study the function of eucalypts genes, we implemented the powerful CRISPR/Cas9 gene editing technology with the hairy roots transformation system. As proofs-of-concept, we targeted two wood-related genes: Cinnamoyl-CoA Reductase1 (CCR1), a key lignin biosynthetic gene and IAA9A an auxin dependent transcription factor of Aux/IAA family. Almost all transgenic hairy roots were edited but the allele-editing rates and spectra varied greatly depending on the gene targeted. Most edition events generated truncated proteins, the prevalent edition types were small deletions but large deletions were also quite frequent. By using a combination of FT-IR spectroscopy and multivariate analysis (partial least square analysis (PLS-DA)), we showed that the CCR1-edited lines, which were clearly separated from the controls. The most discriminant wave-numbers were attributed to lignin. Histochemical analyses further confirmed the decreased lignification and the presence of collapsed vessels in CCR1-edited lines, which are characteristics of CCR1 deficiency. Although the efficiency of editing could be improved, the method described here is already a powerful tool to functionally characterize eucalypts genes for both basic research and industry purposes.


Asunto(s)
Sistemas CRISPR-Cas , Eucalyptus/genética , Edición Génica/métodos , Genes de Plantas/genética , Raíces de Plantas/genética , Madera/genética , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Secuencia de Bases , Eucalyptus/metabolismo , Lignina/biosíntesis , Lignina/genética , Análisis Multivariante , Mutación , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Madera/metabolismo
3.
Bioinformatics ; 34(8): 1287-1294, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29228191

RESUMEN

Motivation: Metagenomics leads to major advances in microbial ecology and biologists need user friendly tools to analyze their data on their own. Results: This Galaxy-supported pipeline, called FROGS, is designed to analyze large sets of amplicon sequences and produce abundance tables of Operational Taxonomic Units (OTUs) and their taxonomic affiliation. The clustering uses Swarm. The chimera removal uses VSEARCH, combined with original cross-sample validation. The taxonomic affiliation returns an innovative multi-affiliation output to highlight databases conflicts and uncertainties. Statistical results and numerous graphical illustrations are produced along the way to monitor the pipeline. FROGS was tested for the detection and quantification of OTUs on real and in silico datasets and proved to be rapid, robust and highly sensitive. It compares favorably with the widespread mothur, UPARSE and QIIME. Availability and implementation: Source code and instructions for installation: https://github.com/geraldinepascal/FROGS.git. A companion website: http://frogs.toulouse.inra.fr. Contact: geraldine.pascal@inra.fr. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metagenómica/métodos , Programas Informáticos , Bacterias/genética , Análisis por Conglomerados
4.
BMC Genomics ; 17: 671, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27552843

RESUMEN

BACKGROUND: Microorganisms constitute a reservoir of enzymes involved in environmental carbon cycling and degradation of plant polysaccharides through their production of a vast variety of Glycoside Hydrolases (GH). The CAZyChip was developed to allow a rapid characterization at transcriptomic level of these GHs and to identify enzymes acting on hydrolysis of polysaccharides or glycans. RESULTS: This DNA biochip contains the signature of 55,220 bacterial GHs available in the CAZy database. Probes were designed using two softwares, and microarrays were directly synthesized using the in situ ink-jet technology. CAZyChip specificity and reproducibility was validated by hybridization of known GHs RNA extracted from recombinant E. coli strains, which were previously identified by a functional metagenomic approach. The GHs arsenal was also studied in bioprocess conditions using rumen derived microbiota. CONCLUSIONS: The CAZyChip appears to be a user friendly tool for profiling the expression of a large variety of GHs. It can be used to study temporal variations of functional diversity, thereby facilitating the identification of new efficient candidates for enzymatic conversions from various ecosystems.


Asunto(s)
Glicósido Hidrolasas/genética , Metagenoma , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia de ARN/métodos , Proteínas Bacterianas/genética , Pared Celular/metabolismo , Bases de Datos Genéticas , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Plantas/metabolismo , Polisacáridos/metabolismo
5.
Environ Toxicol ; 27(3): 129-36, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21702076

RESUMEN

Livestock slurry containing antibiotics is a source of contamination of agricultural soils, with possible effects on soil function and micro-organisms. Extracellular oxido-reductases and hydrolases from the fungus T. versicolor and fungal growth were monitored in liquid cultures in the presence of tetracycline, lincomycine, sulfadiazine and ciprofloxacin for 10 days, in order to assess the suitability of these enzymes as biomarkers. Among the conditions of treatment, statistical analysis demonstrated an increase in manganese-dependent peroxidase after exposure to sulfadiazine at 1 mg/L when compared with the control. Acid phosphatase activity was decreased by lincomycine at 1 or 10 mg/L. Conversely, ß-glucosidase activity increased in the presence of this antibiotic at 10 mg/L. In Terrestrial Model Ecosystems spiked with contaminated pig slurry, lincomycine at the concentration of 8 or 80 µg/kg dry soil, and ciprofloxacin at 250 ng/kg dry soil decreased the activity of soil dehydrogenase, when compared with a green slurry treatment, over 28-day incubations. Laccase activity was similarly decreased in the presence of the highest concentration of antibiotics. We determined bacterial and fungal biomasses using Q-PCR. Bacterial biomass was increased in the presence of lincomycine at 80 µg/kg whatever the time of exposure, and to a lesser extent in the presence of ciprofloxacin at 250 ng/kg, but only at day 28. In contrast, both antibiotics, whatever their concentrations, did not modify fungal biomass in soil. In conclusion, we were unable to demonstrate important effects of antibiotics at concentrations found in the agricultural environment.


Asunto(s)
Antibacterianos/toxicidad , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Estiércol , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Agricultura , Animales , Antibacterianos/análisis , Bacterias/crecimiento & desarrollo , Basidiomycota/efectos de los fármacos , Basidiomycota/crecimiento & desarrollo , Biomasa , Ecosistema , Monitoreo del Ambiente , Hongos/crecimiento & desarrollo , Hidrolasas/metabolismo , Peroxidasas/metabolismo , Medición de Riesgo , Suelo/química , Contaminantes del Suelo/análisis , Porcinos , Trametes/efectos de los fármacos , Trametes/crecimiento & desarrollo , beta-Glucosidasa/metabolismo
6.
Anal Bioanal Chem ; 398(2): 973-84, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20665011

RESUMEN

Hormones are among the highest-impact endocrine disrupters affecting living organisms in aquatic environments. These molecules have been measured in both wastewater and sewage sludge. Analytical techniques for such matrices are well described in the literature. In contrast, there is little information about the analysis of hormones in animal waste. The objectives of this study were, first, to propose a method for conditioning swine manure samples (addition of formaldehyde, separation of the solid and liquid phases, and duration of storage) in order to determine hormones in the liquid fraction of manure by solid-phase extraction (SPE) coupled with gas chromatography-mass spectrometry (GC-MS). Our results showed that analysis of hormones was affected by matrix changes which occurred during freezing and thawing and after addition of formaldehyde, an additive frequently used to preserve environmental samples. Thus, our results argue for the conditioning of samples without formaldehyde and for separating the solid and liquid fractions of manure before freezing. Second, this study reports on the use of a liquid extraction method coupled with SPE and GC-MS analysis for determination of hormones in the solid fraction of manure. Under the conditions selected, hormone recoveries were between 80 and 100%. Finally, the optimized method was used to quantify hormones in both liquid and solid fractions of swine manure from different breeding units. High levels of estrone and α-estradiol were found in samples whereas ß-estradiol was detected in smaller amounts. Estriol and progesterone were mainly found in manure from the gestating sow building whereas testosterone was detected in manure from male breeding buildings.


Asunto(s)
Disruptores Endocrinos/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas/métodos , Hormonas/aislamiento & purificación , Estiércol/análisis , Extracción en Fase Sólida/métodos , Esteroides/aislamiento & purificación , Animales , Disruptores Endocrinos/química , Hormonas/química , Esteroides/química , Porcinos
7.
Anal Bioanal Chem ; 396(5): 1841-51, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20084372

RESUMEN

A sensitive method for the simultaneous analysis of five estrogens in sewage sludge was developed. The extraction and purification steps were optimized and the matrix effects were evaluated. The chromatographic gradient was optimized to limit matrix effects and the analysis step was performed by LC-MS/MS. The method consists of an ASE® extraction with a solvent mixture water/methanol 80/20 v/v at 100 °C followed by two consecutive purifications on Oasis HLB® and florisil cartridges. A thorough validation of the developed method was performed. Recoveries determined at two different spiking levels ranged between 86% and 126% depending on the molecule. Repeatability was evaluated on five replicates of the same sludge sample spiked at two different levels and measuring native estrogens in triplicates of 12 sludge samples. Relative standard deviations obtained a range of between 2% and 27%. Reproducibility was also studied by analyzing the same sludge on four different days: the relative standard deviation ranged between 14% and 20% for E1, ßE2 and E3. For αE2, poor reproducibility (68%) was observed but it was linked to the very low quantity of αE2 present in the sludge sample and not to the method performance. The specificity of the method was evaluated on various sludge samples spiked at different spiking levels showing that performances of the proposed method were not modified by matrix effects. Finally, sensitivity of the method was evaluated taking into account both instrumental sensitivity and matrices; the estimated limits of quantification were around 1 ng/g for E1, between 2 and 4 ng/g for αE2, ßE2, and E3 and around 5 ng/g for EE2.


Asunto(s)
Estrógenos/análisis , Aguas del Alcantarillado/química , Cromatografía Líquida de Alta Presión , Extracción en Fase Sólida , Espectrometría de Masas en Tándem
8.
Appl Microbiol Biotechnol ; 86(6): 1671-92, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20354692

RESUMEN

The estrogens estrone (E1), 17alpha-estradiol (E2alpha), 17beta-estradiol (E2beta), and estriol (E3) are natural sex hormones produced by humans and animals. In addition, there are some synthetic estrogens, such as 17alpha-ethinylestradiol (EE2), used for contraception purposes. These compounds are able to produce endocrine disruption in living organisms at nanogram-per-liter levels. In both humans and animals, estrogens are excreted in urine and feces, reaching the natural environment through discharge from sewage treatment plants (STP) and manure disposal units. In STPs, hormone removal depends on the type of treatment process and on different parameters such as the hydraulic and sludge retention times. Thus, hormone elimination rates vary from 0% to 90% in different STPs. Animals are also an important source of estrogens in the environment. Indeed, animals produce high concentrations of hormones which will end up in manure which is typically spread on land. Hence, waste-borne animal hormones may transfer these pollutants to the soil. The purpose of this review is to highlight the significance for both health and the environment of pollution by estrogens and critically review the existing knowledge on their fate and removal in different treatment processes. Relevant information on the microbial degradation of hormones and metabolic pathways is also included.


Asunto(s)
Bacterias/metabolismo , Estrógenos/análisis , Estrógenos/metabolismo , Estiércol , Aguas del Alcantarillado , Animales , Biodegradación Ambiental , Disruptores Endocrinos/análisis , Disruptores Endocrinos/metabolismo , Estradiol/análisis , Estradiol/metabolismo , Congéneres del Estradiol/análisis , Congéneres del Estradiol/metabolismo , Estriol/análisis , Estriol/metabolismo , Estrona/análisis , Estrona/metabolismo , Etinilestradiol/análisis , Etinilestradiol/metabolismo , Heces/química , Humanos , Estiércol/microbiología , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología
9.
Appl Microbiol Biotechnol ; 85(3): 691-701, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19685239

RESUMEN

The biodegradation of estradiol (E2), estrone (E1), and ethinylestradiol (EE2) was investigated using mixed bacterial cultures enriched from activated sludge. Enrichments were carried out on E2 or EE2 in batch conditions with acetonitrile as additional carbon source. Degradation experiments were performed both using hormones as sole carbon source or with an additional source. The hormones were completely degraded by these cultures. Estradiol was rapidly converted to E1 within 24 h. Thereafter, E1 degradation began, displaying a lag phase ranging from 3 to 4 days. Estrone depletion took from 48 h to more than 6 days, depending on the culture conditions. For EE2 degradation, when it was the sole carbon source, the lag phase and the time required for its complete removal (7 and 15 days, respectively) were shorter that in cultures with a supplementary carbon source. The specific degradation rates observed for E2 both with and without an additional carbon source were similar. By contrast, the specific degradation rates for E1 and EE2 were, respectively, seven and 20 times faster when these hormones were supplied as the sole carbon source. The bacterial community structure of each culture was characterized by molecular and cultural methods. The mixed cultures were made up of species belonging to Alcaligenes faecalis, Pusillimonas sp., Denitrobacter sp., and Brevundimonas diminuta or related to uncultured Bacteroidetes. The isolated strain B. diminuta achieved the conversion of E2 to E1.


Asunto(s)
Bacterias/metabolismo , Estrógenos/metabolismo , Aguas del Alcantarillado/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biotransformación , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Cinética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
10.
Arch Environ Contam Toxicol ; 59(1): 1-12, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20033144

RESUMEN

Endocrin-disrupting compounds (EDCs) are frequently found in wastewater treatment plants (WWTPs). So far, research has been mainly focused on the detection of estrogenic compounds and very little work has been carried out on other receptors activators. In this study, we used reporter cell lines, which allow detecting the activity of estrogen (ERalpha), androgen (AR), pregnane X (PXR), glucocorticoid (GR), progesterone (PR), mineralocorticoid (MR), and aryl hydrocarbon (AhR) receptors, to characterise the endocrine-disrupting profile of the aqueous, suspended particulate matter, and sludge fractions from three Tunisian WWTPs. The aqueous fraction exhibited estrogenic and androgenic activities. Suspended particulate matter and sludge extracts showed estrogenic, aryl hydrocarbon and pregnane X receptor activities. No GR, MR, or PR (ant) agonistic activity was detected in the samples, suggesting that environmental compounds present in sewage might have a limited spectrum of activity. By performing competition experiments with recombinant ERalpha, we demonstrated that the estrogenic activity detected in the aqueous fraction was due to EDCs with a strong affinity for ERalpha. Conversely, in the sludge fraction, it was linked to the presence of EDCs with weak affinity. Moreover, by using different incubation times, we determined that the EDCs present in suspended particulate matter and sludge, which can activate AhR, are metabolically labile compounds. Finally, we showed in this study that environmental compounds are mainly ER, AR, PXR, and AhR activators. Concerning AR and PXR ligands, we do not to know the nature of the molecules. Concerning ER and AhR compounds, competition experiments with recombinant receptor and analysis at different times of exposure of the AhR activation gave some indications of the compound's nature that need to be confirmed by chemical analysis.


Asunto(s)
Disruptores Endocrinos/toxicidad , Monitoreo del Ambiente , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/toxicidad , Andrógenos/análisis , Andrógenos/toxicidad , Disruptores Endocrinos/análisis , Estrógenos/análisis , Estrógenos/toxicidad , Glucocorticoides/análisis , Mineralocorticoides/análisis , Receptor X de Pregnano , Progesterona/análisis , Receptores de Hidrocarburo de Aril/análisis , Receptores de Esteroides/análisis , Túnez , Contaminantes Químicos del Agua/análisis
11.
Environ Toxicol Chem ; 27(8): 1649-58, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18315391

RESUMEN

The steroid hormones estrone (E(1)), 17beta-estradiol (E(2)), estriol (E(3)), 17alpha-ethinylestradiol (EE(2)), and their conjugated forms were surveyed throughout an advanced sewage treatment plant (STP). The estrogen concentrations in water and sludge samples, collected in October 2004 and April 2005, were determined by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Simultaneously, the estrogenic activity was quantified using estrogen-responsive reporter cell lines (MELN) to investigate the behavior of overall estrogenic compounds. The estrogen concentrations in the inlet ranged from 200 to 500 ng/L, with the contribution of conjugated forms being higher than 50%. The major estrogens in influent were E(1) and E(3). The estrogenic activity was between 25 and 130 ng/L of E(2) equivalents (EEQs). Estrogen concentrations and estrogenicity measured in the inlet and in primary treated sewage were similar, showing a weak impact of primary treatment on hormone removal. In contrast, both estrogen concentration and estrogenicity decreased during biological treatment, with high removal efficiencies (>90%). Estrone, E(2), and EE(2) persisted in the treated water below 10 ng/L, whereas the estrogenicity was lower than 5 ng/L of EEQs. Estrogen mass flux in the effluent and sludge represented less than 2 and 4%, respectively, of the inlet. Consequently, the fraction of estrogens sorbed into the sludge was very small, and biodegradation was the main vehicle for estrogen elimination. This dual approach, comparing chemical and biological analysis, allowed us to confirm that most of the estrogenic activity occurring in this STP, which receives mainly domestic sewage, resulted from sex hormones.


Asunto(s)
Disruptores Endocrinos/análisis , Monitoreo del Ambiente/métodos , Aguas del Alcantarillado/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Biodegradación Ambiental , Cromatografía Liquida/métodos , Ecología/métodos , Diseño de Equipo , Estrógenos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Factores de Tiempo
12.
Biotechnol Biofuels ; 11: 284, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356893

RESUMEN

BACKGROUND: Lignocellulose is the most abundant renewable carbon resource that can be used for biofuels and commodity chemicals production. The ability of complex microbial communities present in natural environments that are specialized in biomass deconstruction can be exploited to develop lignocellulose bioconversion processes. Termites are among the most abundant insects on earth and play an important role in lignocellulose decomposition. Although their digestive microbiome is recognized as a potential reservoir of microorganisms producing lignocellulolytic enzymes, the potential to enrich and maintain the lignocellulolytic activity of microbial consortia derived from termite gut useful for lignocellulose biorefinery has not been assessed. Here, we assessed the possibility of enriching a microbial consortium from termite gut and maintaining its lignocellulose degradation ability in controlled anaerobic bioreactors. RESULTS: We enriched a termite gut-derived consortium able to transform lignocellulose into carboxylates under anaerobic conditions. To assess the impact of substrate natural microbiome on the enrichment and the maintenance of termite gut microbiome, the enrichment process was performed using both sterilized and non-sterilized straw. The enrichment process was carried out in bioreactors operating under industrially relevant aseptic conditions. Two termite gut-derived microbial consortia were obtained from Nasutitermes ephratae by sequential batch culture on raw wheat straw as the sole carbon source. Analysis of substrate loss, carboxylate production and microbial diversity showed that regardless of the substrate sterility, the diversity of communities selected by the enrichment process strongly changed compared to that observed in the termite gut. Nevertheless, the community obtained on sterile straw displayed higher lignocellulose degradation capacity; it showed a high xylanase activity and an initial preference for hemicellulose. CONCLUSIONS: This study demonstrates that it is possible to enrich and maintain a microbial consortium derived from termite gut microbiome in controlled anaerobic bioreactors, producing useful carboxylates from raw biomass. Our results suggest that the microbial community is shaped both by the substrate and the conditions that prevail during enrichment. However, when aseptic conditions are applied, it is also affected by the biotic pressure exerted by microorganisms naturally present in the substrate and in the surrounding environment. Besides the efficient lignocellulolytic consortium enriched in this study, our results revealed high levels of xylanase activity that can now be further explored for enzyme identification and overexpression for biorefinery purposes.

13.
Front Microbiol ; 9: 2222, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30337907

RESUMEN

Microbial consortia producing specific enzymatic cocktails are present in the gut of phytophagous and xylophagous insects; they are known to be the most efficient ecosystems to degrade lignocellulose. Here, the ability of these consortia to degrade ex vivo lignocellulosic biomass in anaerobic bioreactors was characterized in term of bioprocess performances, enzymatic activities and bacterial community structure. In a preliminary screening, guts of Ergates faber (beetle), Potosia cuprea (chafer), Gromphadorrhina portentosa (cockroach), Locusta migratoria (locust), and Gryllus bimaculatus (cricket) were inoculated in anaerobic batch reactors, in presence of grounded wheat straw at neutral pH. A short duration fermentation of less than 8 days was observed and was related to a drop of pH from 7 to below 4.5, leading to an interruption of gas and metabolites production. Consistently, a maximum of 180 mgeq.COD of metabolites accumulated in the medium, which was related to a low degradation of the lignocellulosic biomass, with a maximum of 5 and 2.2% observed for chafer and locust gut consortia. The initial cell-bound and extracellular enzyme activities, i.e., xylanase and ß-endoglucanase, were similar to values observed in the literature. Wheat straw fermentation in bioreactors leads to an increase of cell-bounded enzyme activities, with an increase of 145% for cockroach xylanase activity. Bacterial community structures were insect dependent and mainly composed of Clostridia, Bacteroidia and Gammaproteobacteria. Improvement of lignocellulose biodegradation was operated in successive batch mode at pH 8 using the most interesting consortia, i.e., locust, cockroaches and chafer gut consortia. In these conditions, lignocellulose degradation increased significantly: 8.4, 10.5, and 21.0% of the initial COD were degraded for chafer, cockroaches and locusts, respectively in 15 days. Consistently, xylanase activity tripled for the three consortia, attesting the improvement of the process. Bacteroidia was the major bacterial class represented in the bacterial community for all consortia, followed by Clostridia and Gammaproteobacteria classes. This work demonstrates the possibility to maintain apart of insect gut biological activity ex vivo and shows that lignocellulose biodegradation can be improved by using a biomimetic approach. These results bring new insights for the optimization of lignocellulose degradation in bioreactors.

14.
Water Res ; 41(12): 2643-51, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17434202

RESUMEN

The estrogenic compound nonylphenol (NP) is frequently found in sludge from sewage treatment works. Hence, when sewage sludge is spread on the land, endocrine-disrupting compounds may get into the soil. The goal of this study was to investigate the extent to which aerobic mesophilic treatment in continuous reactors permits the removal of NP from sludge and how this process may be useful for treating anaerobically stabilised sludge. We also report on the behaviour of NP during the anaerobic treatment of sludge. The reduction in sludge estrogenic activity observed in the different types of treatment, as measured using estrogen-responsive reporter cells lines (MELN bioassay), was compared with NP removal rates. Under anaerobic conditions, no degradation of NP and its estrogenic activity was observed. Indeed, an accumulation of the compound occurred. In contrast, high removal of NP was achieved in aerobic conditions as well as in aerobic Post-treatment of anaerobically pre-digested sludge, with a concomitant reduction of the sludge's estrogenic potency.


Asunto(s)
Disruptores Endocrinos/metabolismo , Estrógenos/metabolismo , Fenoles/metabolismo , Aguas del Alcantarillado , Contaminantes Químicos del Agua/metabolismo , Aerobiosis , Anaerobiosis , Reactores Biológicos , Línea Celular , Disruptores Endocrinos/farmacología , Estrógenos/farmacología , Humanos , Luciferasas/metabolismo , Fenoles/farmacología , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/farmacología
15.
Mol Ecol Resour ; 17(6): e122-e132, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28695665

RESUMEN

Next-generation sequencing technologies give access to large sets of data, which are extremely useful in the study of microbial diversity based on 16S rRNA gene. However, the production of such large data sets is not only marred by technical biases and sequencing noise but also increases computation time and disc space use. To improve the accuracy of OTU predictions and overcome both computations, storage and noise issues, recent studies and tools suggested removing all single reads and low abundant OTUs, considering them as noise. Although the effect of applying an OTU abundance threshold on α- and ß-diversity has been well documented, the consequences of removing single reads have been poorly studied. Here, we test the effect of singleton read filtering (SRF) on microbial community composition using in silico simulated data sets as well as sequencing data from synthetic and real communities displaying different levels of diversity and abundance profiles. Scalability to large data sets is also assessed using a complete MiSeq run. We show that SRF drastically reduces the chimera content and computational time, enabling the analysis of a complete MiSeq run in just a few minutes. Moreover, SRF accurately determines the actual community diversity: the differences in α- and ß-community diversity obtained with SRF and standard procedures are much smaller than the intrinsic variability of technical and biological replicates.


Asunto(s)
Biología Computacional/métodos , Metagenómica/métodos , Microbiota , Filogenia , Análisis por Conglomerados , ADN Ribosómico/química , ADN Ribosómico/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
Bioresour Technol ; 236: 225-233, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28412647

RESUMEN

Innovative dry chemo- and chemo-mechanical pretreatments form an interesting approach for modifying the native physico-chemical composition of lignocellulose facilitating its microbial conversion to carboxylates. Here, the impact of four dry-pretreatment conditions on the microbial transformation of wheat straw was assessed: milling to 2mm and 100µm, and NaOH chemical impregnation at high substrate concentrations combined with milling at 2mm and 100µm. Pretreatment effect was assessed in the light of substrate structure and composition, its impact on the acidogenic potential and the major enzyme activities of a rumen-derived microbial consortium RWS. Chemo-mechanical pretreatment strongly modified the substrate macroporosity. The highest carboxylate production rate was reached after dry chemo-mechanical treatment with NaOH at 100µm. A positive impact of the dry chemo-mechanical treatment on xylanase activity was observed also. These results underline that increasing substrate macroporosity by dry chemo-mechanical pretreatment had a positive impact on the microbial acidogenic potential.


Asunto(s)
Consorcios Microbianos , Rumen , Animales , Triticum
17.
Front Microbiol ; 8: 2623, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312279

RESUMEN

Termites are xylophages, being able to digest a wide variety of lignocellulosic biomass including wood with high lignin content. This ability to feed on recalcitrant plant material is the result of complex symbiotic relationships, which involve termite-specific gut microbiomes. Therefore, these represent a potential source of microorganisms for the bioconversion of lignocellulose in bioprocesses targeting the production of carboxylates. In this study, gut microbiomes of four termite species were studied for their capacity to degrade wheat straw and produce carboxylates in controlled bioreactors. All of the gut microbiomes successfully degraded lignocellulose and up to 45% w/w of wheat straw degradation was observed, with the Nasutitermes ephratae gut-microbiome displaying the highest levels of wheat straw degradation, carboxylate production and enzymatic activity. Comparing the 16S rRNA gene diversity of the initial gut inocula to the bacterial communities in lignocellulose degradation bioreactors revealed important changes in community diversity. In particular, taxa such as Spirochaetes and Fibrobacteres that were highly abundant in the initial gut inocula were replaced by Firmicutes and Proteobacteria at the end of incubation in wheat straw bioreactors. Overall, this study demonstrates that termite-gut microbiomes constitute a reservoir of lignocellulose-degrading bacteria that can be harnessed in artificial conditions for biomass conversion processes that lead to the production of useful molecules.

18.
FEMS Microbiol Ecol ; 58(3): 550-62, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17117996

RESUMEN

The biodiversity of microbial mats inhabiting the oil-contaminated lagoon Etang de Berre was determined by molecular approaches. The fingerprint of denaturing gradient gel electrophoresis (DGGE) and automatic ribosomal intergenic spacer analysis (ARISA) of mats exposed to different pollution levels showed specific microbial communities for each site but similar diversity richness. Species composition of the mats were compared by constructing 16S rRNA libraries. Amplified rDNA restriction analysis (ARDRA) of clone libraries confirmed their similar level of diversity richness. Phylogenetic analysis of the 16S rRNA sequences showed that the classes gamma and alpha of Proteobacteria were abundantly present in both sites whereas phylotypes related to the delta-Proteobacteria and to the uncultured WS3 group were mainly found in the site with the highest pollution. Identification of the species involved in oil degradation by combining culture-based approaches and DGGE, showed that enrichment cultures were constituted by members of the Rhodobacterales and species related to Rhodococcus, Sphingomonas, Xanthomonas and Microbacterium, all of them known for their ability to degrade hydrocarbons. Our findings suggest that oil pollution has not affected the biodiversity richness of the mats. However, the populations involved in hydrocarbon degradation represent a minor fraction of the mat communities in the Etang de Berre.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Biodiversidad , Hidrocarburos/análisis , Filogenia , Bacterias/metabolismo , ADN Bacteriano/genética , ADN Espaciador Ribosómico/genética , Electroforesis en Gel de Poliacrilamida , Agua Dulce , Genoma Bacteriano , Hidrocarburos/metabolismo , Mar Mediterráneo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo
19.
Bioresour Technol ; 201: 65-73, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26638135

RESUMEN

In a waste into resource strategy, a selection of polyhydroxybutyrate (PHB)-accumulating organisms from activated sludge was achieved in an open continuous culture under acetic acid and phosphorus limitation. Once the microbial population was selected at a dilution rate (D), an increase in phosphorus limitation degree was applied in order to study the intracellular phosphorus plasticity of selected bacteria and the resulting capacity to produce PHB. Whatever D, all selected populations were able to produce PHB. At a D, the phosphorus availability determined the phosphorus-cell content which in turn fixed the amount of cell. All the remaining carbon was thus directed toward PHB. By decreasing D, microorganisms adapted more easily to higher phosphorus limitation leading to higher PHB content. A one-stage continuous reactor operated at D=0.023h(-)(1) gave reliable high PHB productivity with PHB content up to 80%. A two-stage reactor could ensure better productivity while allowing tuning product quality.


Asunto(s)
Bacterias/crecimiento & desarrollo , Carbono/deficiencia , Fósforo/metabolismo , Poliésteres/metabolismo , Polihidroxialcanoatos/biosíntesis , Aguas del Alcantarillado , Bacterias/metabolismo , Consorcios Microbianos
20.
Bioresour Technol ; 196: 241-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26247975

RESUMEN

A rumen-derived microbial consortium was enriched on raw wheat straw as sole carbon source in a sequential batch-reactor (SBR) process under strict mesophilic anaerobic conditions. After five cycles of enrichment the procedure enabled to select a stable and efficient lignocellulolytic microbial consortium, mainly constituted by members of Firmicutes and Bacteroidetes phyla. The enriched community, designed rumen-wheat straw-derived consortium (RWS) efficiently hydrolyzed lignocellulosic biomass, degrading 55.5% w/w of raw wheat straw over 15days at 35°C and accumulating carboxylates as main products. Cellulolytic and hemicellulolytic activities, mainly detected on the cell bound fraction, were produced in the earlier steps of degradation, their production being correlated with the maximal lignocellulose degradation rates. Overall, these results demonstrate the potential of RWS to convert unpretreated lignocellulosic substrates into useful chemicals.


Asunto(s)
Ácidos Grasos Volátiles/metabolismo , Lignina/metabolismo , Consorcios Microbianos , Rumen/microbiología , Triticum/metabolismo , Anaerobiosis , Animales , Biocombustibles , Biomasa , Reactores Biológicos/microbiología , Bovinos , Femenino , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA