Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(3): e1011257, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36972320

RESUMEN

Mycobacterium abscessus is the most pathogenic species among the predominantly saprophytic fast-growing mycobacteria. This opportunistic human pathogen causes severe infections that are difficult to eradicate. Its ability to survive within the host was described mainly with the rough (R) form of M. abscessus, which is lethal in several animal models. This R form is not present at the very beginning of the disease but appears during the progression and the exacerbation of the mycobacterial infection, by transition from a smooth (S) form. However, we do not know how the S form of M. abscessus colonizes and infects the host to then multiply and cause the disease. In this work, we were able to show the hypersensitivity of fruit flies, Drosophila melanogaster, to intrathoracic infections by the S and R forms of M. abscessus. This allowed us to unravel how the S form resists the innate immune response developed by the fly, both the antimicrobial peptides- and cellular-dependent immune responses. We demonstrate that intracellular M. abscessus was not killed within the infected phagocytic cells, by resisting lysis and caspase-dependent apoptotic cell death of Drosophila infected phagocytes. In mice, in a similar manner, intra-macrophage M. abscessus was not killed when M. abscessus-infected macrophages were lysed by autologous natural killer cells. These results demonstrate the propensity of the S form of M. abscessus to resist the host's innate responses to colonize and multiply within the host.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Infecciones por Mycobacterium , Mycobacterium abscessus , Mycobacterium , Animales , Humanos , Ratones , Drosophila melanogaster , Fagocitos/patología , Infecciones por Mycobacterium/microbiología , Drosophila , Infecciones por Mycobacterium no Tuberculosas/microbiología
2.
PLoS Pathog ; 18(8): e1010771, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35960766

RESUMEN

ESX type VII secretion systems are complex secretion machineries spanning across the mycobacterial membrane and play an important role in pathogenicity, nutrient uptake and conjugation. We previously reported the role of ESX-4 in modulating Mycobacterium abscessus intracellular survival. The loss of EccB4 was associated with limited secretion of two effector proteins belonging to the WXG-100 family, EsxU and EsxT, and encoded by the esx-4 locus. This prompted us to investigate the function of M. abscessus EsxU and EsxT in vitro and in vivo. Herein, we show that EsxU and EsxT are substrates of ESX-4 and form a stable 1:1 heterodimer that permeabilizes artificial membranes. While expression of esxU and esxT was up-regulated in M. abscessus-infected macrophages, their absence in an esxUT deletion mutant prevented phagosomal membrane disruption while maintaining M. abscessus in an unacidified phagosome. Unexpectedly, the esxUT deletion was associated with a hyper-virulent phenotype, characterised by increased bacterial loads and mortality in mouse and zebrafish infection models. Collectively, these results demonstrate that the presence of EsxU and EsxT dampens survival and persistence of M. abscessus during infection.


Asunto(s)
Mycobacterium abscessus , Mycobacterium marinum , Mycobacterium tuberculosis , Mycobacterium , Sistemas de Secreción Tipo VII , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ratones , Mycobacterium/genética , Mycobacterium abscessus/genética , Mycobacterium marinum/metabolismo , Mycobacterium tuberculosis/genética , Sistemas de Secreción Tipo VII/genética , Sistemas de Secreción Tipo VII/metabolismo , Pez Cebra/metabolismo
3.
Infect Immun ; 91(11): e0024023, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37847031

RESUMEN

Cystic fibrosis (CF) is a human genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene that encodes a chloride channel. The most severe clinical manifestation is associated with chronic pulmonary infections by pathogenic and opportunistic microbes. Drosophila melanogaster has become the invertebrate model of choice for modeling microbial infections and studying the induced innate immune response. Here, we review its contribution to the understanding of infections with six major pathogens associated with CF (Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia, Mycobacterium abscessus, Streptococcus pneumoniae, and Aspergillus fumigatus) together with the perspectives opened by the recent availability of two CF models in this model organism.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Animales , Humanos , Fibrosis Quística/microbiología , Drosophila melanogaster , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Pulmón/microbiología , Aspergillus fumigatus , Inmunidad Innata , Pseudomonas aeruginosa
4.
Am J Respir Cell Mol Biol ; 66(4): 439-451, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35081328

RESUMEN

Persistent neutrophilic inflammation associated with chronic pulmonary infection causes progressive lung injury and, eventually, death in individuals with cystic fibrosis (CF), a genetic disease caused by biallelic mutations in the CF transmembrane conductance regulator (CFTR) gene. Therefore, we examined whether roscovitine, a cyclin-dependent kinase inhibitor that (in other conditions) reduces inflammation while promoting host defense, might provide a beneficial effect in the context of CF. Herein, using CFTR-depleted zebrafish larvae as an innovative vertebrate model of CF immunopathophysiology, combined with murine and human approaches, we sought to determine the effects of roscovitine on innate immune responses to tissue injury and pathogens in the CF condition. We show that roscovitine exerts antiinflammatory and proresolution effects in neutrophilic inflammation induced by infection or tail amputation in zebrafish. Roscovitine reduces overactive epithelial reactive oxygen species (ROS)-mediated neutrophil trafficking by reducing DUOX2/NADPH-oxidase activity and accelerates inflammation resolution by inducing neutrophil apoptosis and reverse migration. It is important to note that, although roscovitine efficiently enhances intracellular bacterial killing of Mycobacterium abscessus in human CF macrophages ex vivo, we found that treatment with roscovitine results in worse infection in mouse and zebrafish models. By interfering with DUOX2/NADPH oxidase-dependent ROS production, roscovitine reduces the number of neutrophils at infection sites and, consequently, compromises granuloma formation and maintenance, favoring extracellular multiplication of M. abscessus and more severe infection. Our findings bring important new understanding of the immune-targeted action of roscovitine and have significant therapeutic implications for safely targeting inflammation in CF.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Neutrófilos , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Oxidasas Duales , Ratones , Infecciones por Mycobacterium no Tuberculosas/microbiología , Roscovitina/farmacología , Roscovitina/uso terapéutico , Pez Cebra
5.
J Antimicrob Chemother ; 77(12): 3496-3503, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36253948

RESUMEN

BACKGROUND: Mycobacterium abscessus (Mabs), a rapidly growing Mycobacterium species, is considered an MDR organism. Among the standard antimicrobial multi-drug regimens against Mabs, amikacin is considered as one of the most effective. Parenteral amikacin, as a consequence of its inability to penetrate inside the cells, is only active against extracellular mycobacteria. The use of inhaled liposomal amikacin may yield improved intracellular efficacy by targeting Mabs inside the cells, while reducing its systemic toxicity. OBJECTIVES: To evaluate the colocalization of an amikacin liposomal inhalation suspension (ALIS) with intracellular Mabs, and then to measure its intracellular anti-Mabs activity. METHODS: We evaluated the colocalization of ALIS with Mabs in eukaryotic cells such as macrophages (THP-1 and J774.2) or pulmonary epithelial cells (BCi-NS1.1 and MucilAir), using a fluorescent ALIS and GFP-expressing Mabs, to test whether ALIS reaches intracellular Mabs. We then evaluated the intracellular anti-Mabs activity of ALIS inside macrophages using cfu and/or luminescence. RESULTS: Using confocal microscopy, we demonstrated fluorescent ALIS and GFP-Mabs colocalization in macrophages and epithelial cells. We also showed that ALIS was active against intracellular Mabs at a concentration of 32 to 64 mg/L, at 3 and 5 days post-infection. Finally, ALIS intracellular activity was confirmed when tested against 53 clinical Mabs isolates, showing intracellular growth reduction for nearly 80% of the isolates. CONCLUSIONS: Our experiments demonstrate the intracellular localization and intracellular contact between Mabs and ALIS, and antibacterial activity against intracellular Mabs, showing promise for its future use for Mabs pulmonary infections.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium , Humanos , Amicacina/farmacología , Células Eucariotas , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Liposomas , Pruebas de Sensibilidad Microbiana
6.
Microbiology (Reading) ; 167(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34224347

RESUMEN

Non-tuberculous mycobacteria (NTM) are a large group of micro-organisms comprising more than 200 individual species. Most NTM are saprophytic organisms and are found mainly in terrestrial and aquatic environments. In recent years, NTM have been increasingly associated with infections in both immunocompetent and immunocompromised individuals, prompting significant efforts to understand the diverse pathogenic and signalling traits of these emerging pathogens. Since the discovery of Type VII secretion systems (T7SS), there have been significant developments regarding the role of these complex systems in mycobacteria. These specialised systems, also known as Early Antigenic Secretion (ESX) systems, are employed to secrete proteins across the inner membrane. They also play an essential role in virulence, nutrient uptake and conjugation. Our understanding of T7SS in mycobacteria has significantly benefited over the last few years, from the resolution of ESX-3 structure in Mycobacterium smegmatis, to ESX-5 structures in Mycobacterium xenopi and Mycobacterium tuberculosis. In addition, ESX-4, considered until recently as a non-functional system in both pathogenic and non-pathogenic mycobacteria, has been proposed to play an important role in the virulence of Mycobacterium abscessus; an increasingly recognized opportunistic NTM causing severe lung diseases. These major findings have led to important new insights into the functional mechanisms of these biological systems, their implication in virulence, nutrient acquisitions and cell wall shaping, and will be discussed in this review.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas/metabolismo , Sistemas de Secreción Tipo VII/metabolismo , Proteínas Bacterianas/genética , Pared Celular/genética , Pared Celular/metabolismo , Humanos , Micobacterias no Tuberculosas/genética , Micobacterias no Tuberculosas/patogenicidad , Sistemas de Secreción Tipo VII/genética , Virulencia
7.
PLoS Pathog ; 15(11): e1008069, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31703112

RESUMEN

Free-living amoebae are thought to represent an environmental niche in which amoeba-resistant bacteria may evolve towards pathogenicity. To get more insights into factors playing a role for adaptation to intracellular life, we characterized the transcriptomic activities of the emerging pathogen Mycobacterium abscessus in amoeba and murine macrophages (Mϕ) and compared them with the intra-amoebal transcriptome of the closely related, but less pathogenic Mycobacterium chelonae. Data on up-regulated genes in amoeba point to proteins that allow M. abscessus to resist environmental stress and induce defense mechanisms, as well as showing a switch from carbohydrate carbon sources to fatty acid metabolism. For eleven of the most upregulated genes in amoeba and/or Mϕ, we generated individual gene knock-out M. abscessus mutant strains, from which ten were found to be attenuated in amoeba and/or Mϕ in subsequence virulence analyses. Moreover, transfer of two of these genes into the genome of M. chelonae increased the intra-Mϕ survival of the recombinant strain. One knock-out mutant that had the gene encoding Eis N-acetyl transferase protein (MAB_4532c) deleted, was particularly strongly attenuated in Mϕ. Taken together, M. abscessus intra-amoeba and intra-Mϕ transcriptomes revealed the capacity of M. abscessus to adapt to an intracellular lifestyle, with amoeba largely contributing to the enhancement of M. abscessus intra-Mϕ survival.


Asunto(s)
Amoeba/genética , Macrófagos/metabolismo , Infecciones por Mycobacterium no Tuberculosas/genética , Mycobacterium abscessus/patogenicidad , Transcriptoma , Factores de Virulencia/genética , Virulencia/genética , Amoeba/crecimiento & desarrollo , Amoeba/microbiología , Animales , Proteínas Bacterianas/genética , Macrófagos/microbiología , Ratones , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/genética , Mycobacterium abscessus/aislamiento & purificación
8.
Eur J Clin Microbiol Infect Dis ; 40(1): 197-200, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32666482

RESUMEN

The Forensic Science Institute of the French "Gendarmerie Nationale" (IRCGN™) developed in 2015 an ISO 17025 certified mobile DNA laboratory for genetic analyses. This Mobil'DNA laboratory is a fully autonomous and adaptable mobile laboratory to perform genetic analyses in the context of crime scenes, terrorism attacks or disasters. To support the hospital task force in Paris during the peak of the COVID-19 epidemic, we adapted this mobile genetic laboratory to perform high-throughput molecular screening for coronavirus SARS-CoV-2 by real-time PCR. We describe the adaptation of this Mobil'DNA lab to assist in Coronavirus SARS-CoV-2 diagnosis.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Laboratorios , Unidades Móviles de Salud , Ciencias Forenses , Ensayos Analíticos de Alto Rendimiento , Humanos , Paris , ARN Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación
9.
Proc Natl Acad Sci U S A ; 115(43): E10147-E10156, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30301802

RESUMEN

Mycobacterium abscessus is a peculiar rapid-growing Mycobacterium (RGM) capable of surviving within eukaryotic cells thanks to an arsenal of virulence genes also found in slow-growing mycobacteria (SGM), such as Mycobacterium tuberculosis A screen based on the intracellular survival in amoebae and macrophages (MΦ) of an M. abscessus transposon mutant library revealed the important role of MAB_0855, a yet uncharacterized Mycobacterial membrane protein Large (MmpL). Large-scale comparisons with SGM and RGM genomes uncovered MmpL12 proteins as putative orthologs of MAB_0855 and a locus-scale synteny between the MAB_0855 and Mycobacterium chelonae mmpL8 loci. A KO mutant of the MAB_0855 gene, designated herein as mmpL8MAB , had impaired adhesion to MΦ and displayed a decreased intracellular viability. Despite retaining the ability to block phagosomal acidification, like the WT strain, the mmpL8MAB mutant was delayed in damaging the phagosomal membrane and in making contact with the cytosol. Virulence attenuation of the mutant was confirmed in vivo by impaired zebrafish killing and a diminished propensity to induce granuloma formation. The previously shown role of MmpL in lipid transport prompted us to investigate the potential lipid substrates of MmpL8MAB Systematic lipid analysis revealed that MmpL8MAB was required for the proper expression of a glycolipid entity, a glycosyl diacylated nonadecyl diol (GDND) alcohol comprising different combinations of oleic and stearic acids. This study shows the importance of MmpL8MAB in modifying interactions between the bacteria and phagocytic cells and in the production of a previously unknown glycolipid family.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucolípidos/metabolismo , Mycobacterium abscessus/metabolismo , Factores de Virulencia/metabolismo , Virulencia/fisiología , Amoeba/microbiología , Animales , Transporte Biológico/fisiología , Línea Celular , Citosol/metabolismo , Humanos , Lípidos , Macrófagos/metabolismo , Macrófagos/microbiología , Proteínas de la Membrana/metabolismo , Ratones , Fagosomas/microbiología , Pez Cebra/microbiología
10.
Proc Natl Acad Sci U S A ; 115(5): E1002-E1011, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29343644

RESUMEN

Mycobacterium abscessus, a rapidly growing mycobacterium (RGM) and an opportunistic human pathogen, is responsible for a wide spectrum of clinical manifestations ranging from pulmonary to skin and soft tissue infections. This intracellular organism can resist the bactericidal defense mechanisms of amoebae and macrophages, an ability that has not been observed in other RGM. M. abscessus can up-regulate several virulence factors during transient infection of amoebae, thereby becoming more virulent in subsequent respiratory infections in mice. Here, we sought to identify the M. abscessus genes required for replication within amoebae. To this end, we constructed and screened a transposon (Tn) insertion library of an M. abscessus subspecies massiliense clinical isolate for attenuated clones. This approach identified five genes within the ESX-4 locus, which in M. abscessus encodes an ESX-4 type VII secretion system that exceptionally also includes the ESX conserved EccE component. To confirm the screening results and to get further insight into the contribution of ESX-4 to M. abscessus growth and survival in amoebae and macrophages, we generated a deletion mutant of eccB4 that encodes a core structural element of ESX-4. This mutant was less efficient at blocking phagosomal acidification than its parental strain. Importantly, and in contrast to the wild-type strain, it also failed to damage phagosomes and showed reduced signs of phagosome-to-cytosol contact, as demonstrated by a combination of cellular and immunological assays. This study attributes an unexpected and genuine biological role to the underexplored mycobacterial ESX-4 system and its substrates.


Asunto(s)
Amoeba/microbiología , Mycobacterium abscessus/patogenicidad , Fagosomas/microbiología , Sistemas de Secreción Tipo IV/genética , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Caspasa 1/metabolismo , Cromatografía en Capa Delgada , Citosol/metabolismo , Activación Enzimática , Citometría de Flujo , Galectina 3/metabolismo , Eliminación de Gen , Genómica , Humanos , Lípidos/química , Macrófagos/microbiología , Mutación , Mycobacterium abscessus/genética , Mycobacterium tuberculosis/patogenicidad , Células THP-1 , Virulencia
11.
Anaerobe ; 72: 102469, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34699978

RESUMEN

OBJECTIVES: Blood culture bottles (BCBs) are commonly used for the diagnosis of infections associated with orthopedic devices. Although Cutibacterium acnes is an important pathogen in orthopedics, relatively little is known about its growth characteristics in BCBs. This prompted us to analyze the influence of bacterial genotype and clinical significance on time-to-detection (TTD) in BCBs. METHODS: We reviewed 59 cases of orthopedic device-related infections in which at least one intraoperative specimen yielded a pure C. acnes culture from anaerobic BCBs (BD Bactec Lytic/10 Anaerobic/F; Lytic-Ana) and/or solid media. A strain was considered infectant if the same genotype was present in two or more intraoperative samples. From these cases, we isolated a total of 72 unique C. acnes strains belonging to four multilocus sequence type clonal complexes (CCs): CC18, CC28, CC36 and CC53. Growth rate and TTD in Lytic-Ana BCB were studied under experimental conditions (inoculation of standard inoculum) and in clinical samples (inoculation of periprosthetic tissue samples). RESULTS: Median TTD values were shorter for CC53 compared to other CCs under experimental conditions (69 vs. 103 h; p < 0.001) and from clinical specimens (70 vs. 200 h; p = 0.02). Infectant strains had a shorter median TTD compared to contaminant strains in a clinical situation, while the difference was not observed under experimental conditions. CONCLUSIONS: The detection dynamics of C. acnes in Lytic-Ana BCBs were associated with genotype. Thus, TTD not only reflects the bacterial load in clinical samples, but may also reflect the intrinsic properties of the clonal complex of C. acnes.


Asunto(s)
Infecciones por Bacterias Grampositivas/diagnóstico , Infecciones por Bacterias Grampositivas/microbiología , Propionibacterium acnes , Infecciones Relacionadas con Prótesis/diagnóstico , Infecciones Relacionadas con Prótesis/etiología , Adulto , Anciano , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana , Cultivo de Sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tipificación de Secuencias Multilocus , Procedimientos Ortopédicos/efectos adversos , Propionibacterium acnes/clasificación , Propionibacterium acnes/genética , Propionibacterium acnes/aislamiento & purificación
12.
Emerg Infect Dis ; 26(2): 379-380, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31961313

RESUMEN

Mycetoma is a chronic infection that is slow to develop and heal. It can be caused by fungi (eumycetoma) or bacteria (actinomycetoma). We describe a case of actinomycetoma caused by Actinomadura mexicana in the Caribbean region.


Asunto(s)
Actinomadura/aislamiento & purificación , Dermatosis del Pie/diagnóstico , Micetoma/diagnóstico , Actinomadura/genética , Adulto , Región del Caribe , Diagnóstico Diferencial , Femenino , Dermatosis del Pie/microbiología , Humanos , Micetoma/microbiología
13.
Artículo en Inglés | MEDLINE | ID: mdl-32253217

RESUMEN

Mycobacterium abscessus lung infections remain difficult to treat. Recent studies have recognized the power of new combinations of antibiotics, such as bedaquiline and imipenem, although in vitro data have questioned this combination. We report that the efficacy of bedaquiline-imipenem combination treatment relies essentially on the activity of bedaquiline in a C3HeB/FeJ mice model of infection with a rough variant of M. abscessus The addition of imipenem contributed to clearing the infection in the spleen.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Animales , Antibacterianos/farmacología , Diarilquinolinas , Imipenem/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico
14.
PLoS Comput Biol ; 15(5): e1006496, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31145725

RESUMEN

Antibiotic-resistance of hospital-acquired infections is a major public health issue. The worldwide emergence and diffusion of extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae, including Escherichia coli (ESBL-EC) and Klebsiella pneumoniae (ESBL-KP), is of particular concern. Preventing their nosocomial spread requires understanding their transmission. Using Close Proximity Interactions (CPIs), measured by wearable sensors, and weekly ESBL-EC-and ESBL-KP-carriage data, we traced their possible transmission paths among 329 patients in a 200-bed long-term care facility over 4 months. Based on phenotypically defined resistance profiles to 12 antibiotics only, new bacterial acquisitions were tracked. Extending a previously proposed statistical method, the CPI network's ability to support observed incident-colonization episodes of ESBL-EC and ESBL-KP was tested. Finally, mathematical modeling based on our findings assessed the effect of several infection-control measures. A potential infector was identified in the CPI network for 80% (16/20) of ESBL-KP acquisition episodes. The lengths of CPI paths between ESBL-KP incident cases and their potential infectors were shorter than predicted by chance (P = 0.02), indicating that CPI-network relationships were consistent with dissemination. Potential ESBL-EC infectors were identified for 54% (19/35) of the acquisitions, with longer-than-expected lengths of CPI paths. These contrasting results yielded differing impacts of infection control scenarios, with contact reduction interventions proving less effective for ESBL-EC than for ESBL-KP. These results highlight the widely variable transmission patterns among ESBL-producing Enterobacteriaceae species. CPI networks supported ESBL-KP, but not ESBL-EC spread. These outcomes could help design more specific surveillance and control strategies to prevent in-hospital Enterobacteriaceae dissemination.


Asunto(s)
Infección Hospitalaria/epidemiología , Transmisión de Enfermedad Infecciosa/prevención & control , Control de Infecciones/métodos , Adulto , Anciano , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/fisiología , Farmacorresistencia Microbiana , Enterobacteriaceae/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/microbiología , Femenino , Hospitales , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Masculino , Persona de Mediana Edad , Tecnología Inalámbrica , beta-Lactamasas/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-31209005

RESUMEN

Due to intrinsic multidrug resistance, pulmonary infections with Mycobacterium abscessus are extremely difficult to treat. Previously, we demonstrated that bedaquiline is highly effective against Mycobacterium abscessus both in vitro and in vivo Here, we report that verapamil improves the efficacy of bedaquiline activity against M. abscessus clinical isolates and low-level resistant strains, both in vitro and in macrophages. Verapamil may have clinical potential as adjunctive therapy provided that sufficiently high doses can be safely achieved.


Asunto(s)
Antibacterianos/farmacología , Diarilquinolinas/farmacología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/efectos de los fármacos , Verapamilo/farmacología , Antituberculosos/farmacología , Proteínas Bacterianas/genética , Línea Celular , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Sinergismo Farmacológico , Humanos , Macrófagos/microbiología , Pruebas de Sensibilidad Microbiana , Mutación , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium abscessus/genética , Mycobacterium abscessus/aislamiento & purificación
16.
Proc Natl Acad Sci U S A ; 113(29): E4228-37, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27385830

RESUMEN

Mycobacterium abscessus (Mabs) is a rapidly growing Mycobacterium and an emerging pathogen in humans. Transitioning from a smooth (S) high-glycopeptidolipid (GPL) producer to a rough (R) low-GPL producer is associated with increased virulence in zebrafish, which involves the formation of massive serpentine cords, abscesses, and rapid larval death. Generating a cord-deficient Mabs mutant would allow us to address the contribution of cording in the physiopathological signs of the R variant. Herein, a deletion mutant of MAB_4780, encoding a dehydratase, distinct from the ß-hydroxyacyl-ACP dehydratase HadABC complex, was constructed in the R morphotype. This mutant exhibited an alteration of the mycolic acid composition and a pronounced defect in cording. This correlated with an extremely attenuated phenotype not only in wild-type but also in immunocompromised zebrafish embryos lacking either macrophages or neutrophils. The abolition of granuloma formation in embryos infected with the dehydratase mutant was associated with a failure to replicate in macrophages, presumably due to limited inhibition of the phagolysosomal fusion. Overall, these results indicate that MAB_4780 is required for Mabs to successfully establish acute and lethal infections. Therefore, targeting MAB_4780 may represent an attractive antivirulence strategy to control Mabs infections, refractory to most standard chemotherapeutic interventions. The combination of a dehydratase assay with a high-resolution crystal structure of MAB_4780 opens the way to identify such specific inhibitors.


Asunto(s)
Hidroliasas/fisiología , Infecciones por Mycobacterium/enzimología , Mycobacterium/patogenicidad , Proteínas de Pez Cebra/fisiología , Animales , Línea Celular , Embrión no Mamífero/enzimología , Embrión no Mamífero/inmunología , Embrión no Mamífero/microbiología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Infecciones por Mycobacterium/microbiología , Neutrófilos/inmunología , Virulencia , Pez Cebra/inmunología , Pez Cebra/metabolismo , Pez Cebra/microbiología
17.
Mol Microbiol ; 104(6): 889-904, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28340510

RESUMEN

Mycobacterial genomes contain large sets of loci encoding membrane proteins that belong to a family of multidrug resistance pumps designated Resistance-Nodulation-Cell Division (RND) permeases. Mycobacterial membrane protein Large (MmpL) transporters represent a subclass of RND transporters known to participate in the export of lipid components across the cell envelope. These surface-exposed lipids with unusual structures play key roles in the physiology of mycobacteria and/or can act as virulence factors and immunomodulators. Defining the substrate specificity of MmpLs and their mechanisms of regulation helps understanding how mycobacteria elaborate their complex cell wall. This review describes the diversity of MmpL proteins in mycobacteria, emphasising their high abundance in a few opportunistic rapid-growing mycobacteria. It reports the conservation of mmpL loci between Mycobacterium tuberculosis and non-tuberculous mycobacteria, useful in predicting the role of MmpLs with unknown functions. Paradoxically, whereas MmpLs participate in drug resistance mechanisms, they represent also attractive pharmacological targets, opening the way for exciting translational applications. The most recent advances regarding structural/functional information are also provided to explain the molecular basis underlying the proton-motive force driven lipid transport. Overall, this review emphasises the Janus-face nature of MmpLs at the crossroads between antibiotic resistance mechanisms and exquisite vulnerability to drugs.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/fisiología , Secuencia de Aminoácidos , Antiinfecciosos/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Pared Celular/metabolismo , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/metabolismo , Estructura Terciaria de Proteína , Fuerza Protón-Motriz , Factores de Virulencia/metabolismo
18.
PLoS Pathog ; 12(11): e1005986, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27806130

RESUMEN

Mycobacterium abscessus is considered the most common respiratory pathogen among the rapidly growing non-tuberculous mycobacteria. Infections with M. abscessus are increasingly found in patients with chronic lung diseases, especially cystic fibrosis, and are often refractory to antibiotic therapy. M. abscessus has two morphotypes with distinct effects on host cells and biological responses. The smooth (S) variant is recognized as the initial airway colonizer while the rough (R) is known to be a potent inflammatory inducer associated with invasive disease, but the underlying immunopathological mechanisms of the infection remain unsolved. We conducted a comparative stepwise dissection of the inflammatory response in S and R pathogenesis by monitoring infected transparent zebrafish embryos. Loss of TNFR1 function resulted in increased mortality with both variants, and was associated with unrestricted intramacrophage bacterial growth and decreased bactericidal activity. The use of transgenic zebrafish lines harboring fluorescent macrophages and neutrophils revealed that neutrophils, like macrophages, interact with M. abscessus at the initial infection sites. Impaired TNF signaling disrupted the IL8-dependent neutrophil mobilization, and the defect in neutrophil trafficking led to the formation of aberrant granulomas, extensive mycobacterial cording, unrestricted bacterial growth and subsequent larval death. Our findings emphasize the central role of neutrophils for the establishment and maintenance of the protective M. abscessus granulomas. These results also suggest that the TNF/IL8 inflammatory axis is necessary for protective immunity against M. abscessus and may be of clinical relevance to explain why immunosuppressive TNF therapy leads to the exacerbation of M. abscessus infections.


Asunto(s)
Granuloma/inmunología , Infecciones por Mycobacterium no Tuberculosas/inmunología , Neutrófilos/inmunología , Transducción de Señal/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Animales Modificados Genéticamente , Quimiotaxis de Leucocito/inmunología , Modelos Animales de Enfermedad , Granuloma/patología , Microscopía , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/patología , Neutrófilos/citología , Micobacterias no Tuberculosas/inmunología , Reacción en Cadena de la Polimerasa , Pez Cebra
19.
Mol Microbiol ; 99(5): 866-83, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26585558

RESUMEN

In mycobacteria, MmpL proteins represent key components that participate in the biosynthesis of the complex cell envelope. Whole genome analysis of a spontaneous rough morphotype variant of Mycobacterium abscessus subsp. bolletii identified a conserved tyrosine that is crucial for the function of MmpL family proteins. Isogenic smooth (S) and rough (R) variants differed by a single mutation linked to a Y842H substitution in MmpL4a. This mutation caused a deficiency in glycopeptidolipid production/transport in the R variant and a gain in the capacity to produce cords in vitro. In zebrafish, increased virulence of the M. bolletii R variant over the parental S strain was found, involving massive production of serpentine cords, abscess formation and rapid larval death. Importantly, this finding allowed us to demonstrate an essential role of Tyr842 in several different MmpL proteins, including Mycobacterium tuberculosis MmpL3. Structural homology models of MmpL4a and MmpL3 identified two additional critical residues located in the transmembrane regions TM10 and TM4 that are facing each other. We propose that these central residues are part of the proton-motive force that supplies the energy for substrate transport. Hence, we provide important insights into mechanistic/structural aspects of MmpL proteins as lipid transporters and virulence determinants in mycobacteria.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Mycobacterium/metabolismo , Tirosina/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Pared Celular/metabolismo , Secuencia Conservada , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mycobacterium/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fuerza Protón-Motriz , Virulencia , Factores de Virulencia/metabolismo , Pez Cebra
20.
Mol Microbiol ; 101(3): 515-29, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27121350

RESUMEN

The natural resistance of Mycobacterium abscessus to most commonly available antibiotics seriously limits chemotherapeutic treatment options, which is particularly challenging for cystic fibrosis patients infected with this rapid-growing mycobacterium. New drugs with novel molecular targets are urgently needed against this emerging pathogen. However, the discovery of such new chemotypes has not been appropriately performed. Here, we demonstrate the utility of a phenotypic screen for bactericidal compounds against M. abscessus using a library of compounds previously validated for activity against M. tuberculosis. We identified a new piperidinol-based molecule, PIPD1, exhibiting potent activity against clinical M. abscessus strains in vitro and in infected macrophages. Treatment of infected zebrafish with PIPD1 correlated with increased embryo survival and decreased bacterial burden. Whole genome analysis of M. abscessus strains resistant to PIPD1 identified several mutations in MAB_4508, encoding a protein homologous to MmpL3. Biochemical analyses demonstrated that while de novo mycolic acid synthesis was unaffected, PIPD1 strongly inhibited the transport of trehalose monomycolate, thereby abrogating mycolylation of arabinogalactan. Mapping the mutations conferring resistance to PIPD1 on a MAB_4508 tridimensional homology model defined a potential PIPD1-binding pocket. Our data emphasize a yet unexploited chemical structure class against M. abscessus infections with promising translational development possibilities.


Asunto(s)
Antituberculosos/farmacología , Ácidos Micólicos/metabolismo , Micobacterias no Tuberculosas/efectos de los fármacos , Piperidinas/farmacología , Animales , Sitios de Unión , Modelos Animales de Enfermedad , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA