Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 606(7914): 570-575, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35614218

RESUMEN

The lineage and developmental trajectory of a cell are key determinants of cellular identity. In the vascular system, endothelial cells (ECs) of blood and lymphatic vessels differentiate and specialize to cater to the unique physiological demands of each organ1,2. Although lymphatic vessels were shown to derive from multiple cellular origins, lymphatic ECs (LECs) are not known to generate other cell types3,4. Here we use recurrent imaging and lineage-tracing of ECs in zebrafish anal fins, from early development to adulthood, to uncover a mechanism of specialized blood vessel formation through the transdifferentiation of LECs. Moreover, we demonstrate that deriving anal-fin vessels from lymphatic versus blood ECs results in functional differences in the adult organism, uncovering a link between cell ontogeny and functionality. We further use single-cell RNA-sequencing analysis to characterize the different cellular populations and transition states involved in the transdifferentiation process. Finally, we show that, similar to normal development, the vasculature is rederived from lymphatics during anal-fin regeneration, demonstrating that LECs in adult fish retain both potency and plasticity for generating blood ECs. Overall, our research highlights an innate mechanism of blood vessel formation through LEC transdifferentiation, and provides in vivo evidence for a link between cell ontogeny and functionality in ECs.


Asunto(s)
Vasos Sanguíneos , Transdiferenciación Celular , Vasos Linfáticos , Aletas de Animales/citología , Animales , Vasos Sanguíneos/citología , Linaje de la Célula , Células Endoteliales/citología , Vasos Linfáticos/citología , Pez Cebra
2.
Dev Biol ; 457(2): 181-190, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30862465

RESUMEN

To ensure tissue homeostasis the brain needs to be protected from blood-derived fluctuations or pathogens that could affect its function. Therefore, the brain capillaries develop tissue-specific properties to form a selective blood-brain barrier (BBB), allowing the passage of essential molecules to the brain and blocking the penetration of potentially harmful compounds or cells. Previous studies reported the presence of this barrier in zebrafish. The intrinsic features of the zebrafish embryos and larvae in combination with optical techniques, make them suitable for the study of barrier establishment and maturation. In this review, we discuss the most recent contributions to the development and formation of a functional zebrafish BBB. Moreover, we compare the molecular and cellular characteristic of the zebrafish and the mammalian BBB.


Asunto(s)
Barrera Hematoencefálica/embriología , Encéfalo/irrigación sanguínea , Sistema Cardiovascular/embriología , Neovascularización Fisiológica/fisiología , Pez Cebra/embriología , Animales , Encéfalo/embriología , Células Endoteliales/fisiología , Endotelio Vascular/embriología , Endotelio Vascular/fisiología , Uniones Estrechas/fisiología
3.
Angiogenesis ; 24(3): 695-714, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33983539

RESUMEN

Sprouting angiogenesis is key to many pathophysiological conditions, and is strongly regulated by vascular endothelial growth factor (VEGF) signaling through VEGF receptor 2 (VEGFR2). Here we report that the early endosomal GTPase Rab5C and its activator RIN2 prevent lysosomal routing and degradation of VEGF-bound, internalized VEGFR2 in human endothelial cells. Stabilization of endosomal VEGFR2 levels by RIN2/Rab5C is crucial for VEGF signaling through the ERK and PI3-K pathways, the expression of immediate VEGF target genes, as well as specification of angiogenic 'tip' and 'stalk' cell phenotypes and cell sprouting. Using overexpression of Rab mutants, knockdown and CRISPR/Cas9-mediated gene editing, and live-cell imaging in zebrafish, we further show that endosomal stabilization of VEGFR2 levels is required for developmental angiogenesis in vivo. In contrast, the premature degradation of internalized VEGFR2 disrupts VEGF signaling, gene expression, and tip cell formation and migration. Thus, an endosomal feedforward mechanism maintains receptor signaling by preventing lysosomal degradation, which is directly linked to the induction of target genes and cell fate in collectively migrating cells during morphogenesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Proteolisis , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Proteínas Portadoras/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Pez Cebra/genética , Proteínas de Unión al GTP rab5/genética
4.
Development ; 143(12): 2217-27, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27302398

RESUMEN

During cardiac valve development, the single-layered endocardial sheet at the atrioventricular canal (AVC) is remodeled into multilayered immature valve leaflets. Most of our knowledge about this process comes from examining fixed samples that do not allow a real-time appreciation of the intricacies of valve formation. Here, we exploit non-invasive in vivo imaging techniques to identify the dynamic cell behaviors that lead to the formation of the immature valve leaflets. We find that in zebrafish, the valve leaflets consist of two sets of endocardial cells at the luminal and abluminal side, which we refer to as luminal cells (LCs) and abluminal cells (ALCs), respectively. By analyzing cellular rearrangements during valve formation, we observed that the LCs and ALCs originate from the atrium and ventricle, respectively. Furthermore, we utilized Wnt/ß-catenin and Notch signaling reporter lines to distinguish between the LCs and ALCs, and also found that cardiac contractility and/or blood flow is necessary for the endocardial expression of these signaling reporters. Thus, our 3D analyses of cardiac valve formation in zebrafish provide fundamental insights into the cellular rearrangements underlying this process.


Asunto(s)
Válvulas Cardíacas/citología , Válvulas Cardíacas/embriología , Imagenología Tridimensional , Animales , Movimiento Celular , Circulación Coronaria , Endocardio/citología , Endocardio/embriología , Regulación del Desarrollo de la Expresión Génica , Atrios Cardíacos/citología , Atrios Cardíacos/embriología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Mutación/genética , Contracción Miocárdica , Organogénesis/genética , Receptores Notch/metabolismo , Vía de Señalización Wnt , Pez Cebra
5.
Dev Biol ; 430(1): 142-155, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28811218

RESUMEN

During vertebrate embryogenesis, vascular endothelial cells (ECs) and primitive erythrocytes become specified within close proximity in the posterior lateral plate mesoderm (LPM) from a common progenitor. However, the signaling cascades regulating the specification into either lineage remain largely elusive. Here, we analyze the contribution of ß-catenin dependent Wnt signaling to EC and erythrocyte specification during zebrafish embryogenesis. We generated novel ß-catenin dependent Wnt signaling reporters which, by using destabilized fluorophores (Venus-Pest, dGFP), specifically allow us to detect Wnt signaling responses in narrow time windows as well as in spatially restricted domains, defined by Cre recombinase expression (Tg(axin2BAC:Venus-Pest)mu288; Tg(14TCF:loxP-STOP-loxP-dGFP)mu202). We therefore can detect ß-catenin dependent Wnt signaling activity in a subset of the Fli1a-positive progenitor population. Additionally, we show that mesodermal Wnt3a-mediated signaling via the transcription factor Lef1 positively regulates EC specification (defined by kdrl expression) at the expense of primitive erythrocyte specification (defined by gata1 expression) in zebrafish embryos. Using mesoderm derived from human embryonic stem cells, we identified the same principle of Wnt signaling dependent EC specification in conjunction with auto-upregulation of LEF1. Our data indicate a novel role of ß-catenin dependent Wnt signaling in regulating EC specification during vasculogenesis.


Asunto(s)
Linaje de la Célula , Células Endoteliales/citología , Células Endoteliales/metabolismo , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Recuento de Células , Diferenciación Celular , Línea Celular , Eritrocitos/citología , Eritrocitos/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Mesodermo/citología , Mesodermo/metabolismo , Modelos Biológicos , Organogénesis , Somitos/embriología , Somitos/metabolismo , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo
6.
Semin Cell Dev Biol ; 31: 106-14, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24813365

RESUMEN

The vasculature consists of an extensively branched network of blood and lymphatic vessels that ensures the efficient circulation and thereby the supply of all tissues with oxygen and nutrients. Research within the last decade has tremendously advanced our understanding of how this complex network is formed, how angiogenic growth is controlled and how differences between individual endothelial cells contribute to achieving this complex pattern. The small size and the optical clarity of the zebrafish embryo in combination with the advancements in imaging technologies cleared the way for the zebrafish as an important in vivo model for elucidating the mechanisms of angiogenesis. In this review we discuss the recent contributions of the analysis of zebrafish vascular development on how vessels establish their characteristic morphology and become patent. We focus on the morphogenetic cellular behaviors as well as the molecular mechanisms that drive these processes in the developing zebrafish embryo.


Asunto(s)
Neovascularización Fisiológica , Pez Cebra , Animales , Endotelio Vascular/citología , Endotelio Vascular/crecimiento & desarrollo , Endotelio Vascular/metabolismo , Pez Cebra/embriología
7.
Development ; 140(13): 2776-86, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23698350

RESUMEN

The formation and lumenization of blood vessels has been studied in some detail, but there is little understanding of the morphogenetic mechanisms by which endothelial cells (ECs) forming large caliber vessels aggregate, align themselves and finally form a lumen that can support blood flow. Here, we focus on the development of the zebrafish common cardinal veins (CCVs), which collect all the blood from the embryo and transport it back to the heart. We show that the angioblasts that eventually form the definitive CCVs become specified as a separate population distinct from the angioblasts that form the lateral dorsal aortae. The subsequent development of the CCVs represents a novel mechanism of vessel formation, during which the ECs delaminate and align along the inner surface of an existing luminal space. Thereby, the CCVs are initially established as open-ended endothelial tubes, which extend as single EC sheets along the flow routes of the circulating blood and eventually enclose the entire lumen in a process that we term 'lumen ensheathment'. Furthermore, we found that the initial delamination of the ECs as well as the directional migration within the EC sheet depend on Cadherin 5 function. By contrast, EC proliferation within the growing CCV is controlled by Vascular endothelial growth factor C, which is provided by circulating erythrocytes. Our findings not only identify a novel mechanism of vascular lumen formation, but also suggest a new form of developmental crosstalk between hematopoietic and endothelial cell lineages.


Asunto(s)
Embrión no Mamífero/metabolismo , Venas/embriología , Venas/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Movimiento Celular/genética , Movimiento Celular/fisiología , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Angiogenesis ; 18(4): 463-75, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26198291

RESUMEN

Analysis of developmental angiogenesis can help to identify regulatory networks, which also contribute to disease-related vascular growth. Vascular endothelial growth factors (Vegf) drive angiogenic processes such as sprouting, endothelial cell (EC) migration and proliferation. However, how Vegf expression is regulated during development is not well understood. By analyzing developmental zebrafish angiogenesis, we have identified Metallothionein 2 (Mt2) as a novel regulator of vegfc expression. While Metallothioneins (Mts) have been extensively analyzed for their capability of regulating homeostasis and metal detoxification, we demonstrate that Mt2 is required for EC migration, proliferation and angiogenic sprouting upstream of vegfc expression. We further demonstrate that another Mt family member cannot compensate Mt2 deficiency and therefore postulate that Mt2 regulates angiogenesis independent of its canonical Mt function. Our data not only reveal a non-canonical function of Mt2 in angiogenesis, but also propose Mt2 as a novel regulator of vegfc expression.


Asunto(s)
Movimiento Celular/fisiología , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Metalotioneína/metabolismo , Neovascularización Fisiológica/fisiología , Transcripción Genética/fisiología , Factor C de Crecimiento Endotelial Vascular/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/metabolismo , Animales , Células Endoteliales/citología , Metalotioneína/genética , Factor C de Crecimiento Endotelial Vascular/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
9.
Circ Res ; 110(4): 578-87, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22247485

RESUMEN

RATIONALE: The importance for Bmp signaling during embryonic stem cell differentiation into myocardial cells has been recognized. The question when and where Bmp signaling in vivo regulates myocardial differentiation has remained largely unanswered. OBJECTIVE: To identify when and where Bmp signaling regulates cardiogenic differentiation. METHODS AND RESULTS: Here we have observed that in zebrafish embryos, Bmp signaling is active in cardiac progenitor cells prior to their differentiation into cardiomyocytes. Bmp signaling is continuously required during somitogenesis within the anterior lateral plate mesoderm to induce myocardial differentiation. Surprisingly, Bmp signaling is actively repressed in differentiating myocardial cells. We identified the inhibitory Smad6a, which is expressed in the cardiac tissue, to be required to inhibit Bmp signaling and thereby promote expansion of the ventricular myocardium. CONCLUSION: Bmp signaling exerts opposing effects on myocardial differentiation in the embryo by promoting as well as inhibiting cardiac growth.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Corazón/embriología , Miocitos Cardíacos/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Mutación , Proteína smad6/metabolismo , Proteínas de Dominio T Box/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
10.
Methods Mol Biol ; 2608: 425-450, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36653721

RESUMEN

Analysis of cardiovascular development in zebrafish embryos has become a major driver of vascular research in recent years. Imaging-based analyses have allowed the discovery or verification of morphologically distinct processes and mechanisms of, e.g., endothelial cell migration, angiogenic sprouting, tip or stalk cell behavior, and vessel anastomosis. In this chapter, we describe the techniques and tools used for confocal imaging of zebrafish endothelial development in combination with general experimental approaches for molecular dissection of involved signaling pathways.


Asunto(s)
Transducción de Señal , Pez Cebra , Animales , Pez Cebra/metabolismo , Morfogénesis , Proteínas de Pez Cebra/metabolismo , Movimiento Celular , Neovascularización Fisiológica
11.
Circ Res ; 104(11): 1260-6, 2009 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-19423847

RESUMEN

In a recent genetic screen, we identified mutations in genes important for vascular development and maintenance in zebrafish (Jin et al. Dev Biol. 2007;307:29-42). Mutations [corrected] at the adrasteia (adr) locus cause a pronounced dilatation of the aortic arch vessels as well as aberrant patterning of the hindbrain capillaries and, to a lesser extent, intersomitic vessels. This dilatation of the aortic arch vessels does not appear to be caused by increased cell proliferation but is dependent on vascular endothelial growth factor (Vegf) signaling. By positional cloning, we isolated seryl-tRNA synthetase (sars) as the gene affected by the adr mutations. Small interfering RNA knockdown experiments in human umbilical vein endothelial cell cultures indicate that SARS also regulates endothelial sprouting. These analyses of zebrafish and human endothelial cells reveal a new noncanonical function of Sars in endothelial development.


Asunto(s)
Circulación Cerebrovascular/fisiología , Corazón/embriología , Serina-ARNt Ligasa/genética , Inhibidores de la Angiogénesis/farmacología , Animales , Aorta Torácica/citología , Aorta Torácica/embriología , Aorta Torácica/fisiología , Encéfalo/fisiología , División Celular , Mapeo Cromosómico , Cicloheximida/farmacología , Embrión no Mamífero/fisiología , Endotelio Vascular/citología , Endotelio Vascular/fisiología , Humanos , Indoles/farmacología , Miocardio/citología , Pirroles/farmacología , ARN Interferente Pequeño/genética , Transfección , Venas Umbilicales/citología , Venas Umbilicales/fisiología , Pez Cebra
12.
Elife ; 92020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32955436

RESUMEN

To form new blood vessels (angiogenesis), endothelial cells (ECs) must be activated and acquire highly migratory and proliferative phenotypes. However, the molecular mechanisms that govern these processes are incompletely understood. Here, we show that Apelin signaling functions to drive ECs into such an angiogenic state. Zebrafish lacking Apelin signaling exhibit defects in endothelial tip cell morphology and sprouting. Using transplantation experiments, we find that in mosaic vessels, wild-type ECs leave the dorsal aorta (DA) and form new vessels while neighboring ECs defective in Apelin signaling remain in the DA. Mechanistically, Apelin signaling enhances glycolytic activity in ECs at least in part by increasing levels of the growth-promoting transcription factor c-Myc. Moreover, APELIN expression is regulated by Notch signaling in human ECs, and its function is required for the hypersprouting phenotype in Delta-like 4 (Dll4) knockdown zebrafish embryos. These data provide new insights into fundamental principles of blood vessel formation and Apelin signaling, enabling a better understanding of vascular growth in health and disease.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Quimiocinas/genética , Morfogénesis/genética , Transducción de Señal/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Vasos Sanguíneos/metabolismo , Quimiocinas/metabolismo , Células Endoteliales/metabolismo , Proteínas de Pez Cebra/metabolismo
13.
Nat Commun ; 10(1): 4113, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511517

RESUMEN

Intra-organ communication guides morphogenetic processes that are essential for an organ to carry out complex physiological functions. In the heart, the growth of the myocardium is tightly coupled to that of the endocardium, a specialized endothelial tissue that lines its interior. Several molecular pathways have been implicated in the communication between these tissues including secreted factors, components of the extracellular matrix, or proteins involved in cell-cell communication. Yet, it is unknown how the growth of the endocardium is coordinated with that of the myocardium. Here, we show that an increased expansion of the myocardial atrial chamber volume generates higher junctional forces within endocardial cells. This leads to biomechanical signaling involving VE-cadherin, triggering nuclear localization of the Hippo pathway transcriptional regulator Yap1 and endocardial proliferation. Our work suggests that the growth of the endocardium results from myocardial chamber volume expansion and ends when the tension on the tissue is relaxed.


Asunto(s)
Endocardio/crecimiento & desarrollo , Miocardio/metabolismo , Transducción de Señal , Pez Cebra/embriología , Animales , Antígenos CD/metabolismo , Fenómenos Biomecánicos , Cadherinas/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Tamaño de la Célula , Proteínas del Citoesqueleto/metabolismo , Endocardio/citología , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , Proteína Homeótica Nkx-2.5/metabolismo , Uniones Intercelulares/metabolismo , Modelos Biológicos , Mutación/genética , Transactivadores/metabolismo , Proteínas Wnt/metabolismo , Proteínas Señalizadoras YAP , Proteínas de Pez Cebra/metabolismo
14.
Nat Commun ; 10(1): 453, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30692543

RESUMEN

Venous endothelial cells are molecularly and functionally distinct from their arterial counterparts. Although veins are often considered the default endothelial state, genetic manipulations can modulate both acquisition and loss of venous fate, suggesting that venous identity is the result of active transcriptional regulation. However, little is known about this process. Here we show that BMP signalling controls venous identity via the ALK3/BMPR1A receptor and SMAD1/SMAD5. Perturbations to TGF-ß and BMP signalling in mice and zebrafish result in aberrant vein formation and loss of expression of the venous-specific gene Ephb4, with no effect on arterial identity. Analysis of a venous endothelium-specific enhancer for Ephb4 shows enriched binding of SMAD1/5 and a requirement for SMAD binding motifs. Further, our results demonstrate that BMP/SMAD-mediated Ephb4 expression requires the venous-enriched BMP type I receptor ALK3/BMPR1A. Together, our analysis demonstrates a requirement for BMP signalling in the establishment of Ephb4 expression and the venous vasculature.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Proteínas Morfogenéticas Óseas/genética , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal/genética , Venas/metabolismo , Animales , Animales Modificados Genéticamente , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Células Endoteliales/metabolismo , Ratones Noqueados , Ratones Transgénicos , Receptor EphB4/genética , Receptor EphB4/metabolismo , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Venas/embriología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
15.
Nat Commun ; 9(1): 4860, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30451830

RESUMEN

Canonical Wnt signaling is crucial for vascularization of the central nervous system and blood-brain barrier (BBB) formation. BBB formation and modulation are not only important for development, but also relevant for vascular and neurodegenerative diseases. However, there is little understanding of how Wnt signaling contributes to brain angiogenesis and BBB formation. Here we show, using high resolution in vivo imaging and temporal and spatial manipulation of Wnt signaling, different requirements for Wnt signaling during brain angiogenesis and BBB formation. In the absence of Wnt signaling, premature Sphingosine-1-phosphate receptor (S1pr) signaling reduces VE-cadherin and Esama at cell-cell junctions. We suggest that Wnt signaling suppresses S1pr signaling during angiogenesis to enable the dynamic junction formation during anastomosis, whereas later S1pr signaling regulates BBB maturation and VE-cadherin stabilization. Our data provides a link between brain angiogenesis and BBB formation and identifies Wnt signaling as coordinator of the timing and as regulator of anastomosis.


Asunto(s)
Antígenos CD/genética , Encéfalo/metabolismo , Cadherinas/genética , Neovascularización Fisiológica/genética , Receptores de Lisoesfingolípidos/genética , Vía de Señalización Wnt , Proteínas de Pez Cebra/genética , Pez Cebra/genética , beta Catenina/genética , Animales , Animales Modificados Genéticamente , Antígenos CD/metabolismo , Barrera Hematoencefálica/crecimiento & desarrollo , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/crecimiento & desarrollo , Cadherinas/metabolismo , Capilares/crecimiento & desarrollo , Capilares/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Circulación Cerebrovascular/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , beta Catenina/metabolismo , Proteína Fluorescente Roja
16.
Nat Cell Biol ; 19(6): 653-665, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28530658

RESUMEN

The hierarchical organization of properly sized blood vessels ensures the correct distribution of blood to all organs of the body, and is controlled via haemodynamic cues. In current concepts, an endothelium-dependent shear stress set point causes blood vessel enlargement in response to higher flow rates, while lower flow would lead to blood vessel narrowing, thereby establishing homeostasis. We show that during zebrafish embryonic development increases in flow, after an initial expansion of blood vessel diameters, eventually lead to vessel contraction. This is mediated via endothelial cell shape changes. We identify the transforming growth factor beta co-receptor endoglin as an important player in this process. Endoglin mutant cells and blood vessels continue to enlarge in response to flow increases, thus exacerbating pre-existing embryonic arterial-venous shunts. Together, our data suggest that cell shape changes in response to biophysical cues act as an underlying principle allowing for the ordered patterning of tubular organs.


Asunto(s)
Forma de la Célula , Endoglina/metabolismo , Células Endoteliales/metabolismo , Hemodinámica , Mecanotransducción Celular , Proteínas de Pez Cebra/metabolismo , Animales , Malformaciones Arteriovenosas/genética , Malformaciones Arteriovenosas/metabolismo , Malformaciones Arteriovenosas/fisiopatología , Endoglina/deficiencia , Endoglina/genética , Predisposición Genética a la Enfermedad , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones Noqueados , Mutación , Neovascularización Fisiológica , Fenotipo , Flujo Sanguíneo Regional , Estrés Mecánico , Factores de Tiempo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
17.
J Cell Biol ; 215(3): 415-430, 2016 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-27799363

RESUMEN

During cardiovascular development, tight spatiotemporal regulation of molecular cues is essential for controlling endothelial cell (EC) migration. Secreted class III Semaphorins play an important role in guidance of neuronal cell migration and were lately linked to regulating cardiovascular development. Recently, SEMA3D gene disruptions were associated with cardiovascular defects in patients; however, the mechanisms of action were not revealed. Here we show for the first time that Sema3d regulates collective EC migration in zebrafish through two separate mechanisms. Mesenchymal Sema3d guides outgrowth of the common cardinal vein via repulsion and signals through PlexinD1. Additionally, within the same ECs, we identified a novel function of autocrine Sema3d signaling in regulating Actin network organization and EC morphology. We show that this new function requires Sema3d signaling through Neuropilin1, which then regulates Actin network organization through RhoA upstream of Rock, stabilizing the EC sheet. Our findings are highly relevant for understanding EC migration and the mechanisms of collective migration in other contexts.


Asunto(s)
Movimiento Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neuropilina-1/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Actinas/metabolismo , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/embriología , Cadherinas/metabolismo , Comunicación Celular , Forma de la Célula , Mesodermo/citología , Mesodermo/metabolismo , Modelos Biológicos , Seudópodos/metabolismo , Transducción de Señal , Pez Cebra/embriología , Proteína de Unión al GTP rhoA/metabolismo
18.
Elife ; 52016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27852438

RESUMEN

Vascular networks surrounding individual organs are important for their development, maintenance, and function; however, how these networks are assembled remains poorly understood. Here we show that CNS progenitors, referred to as radial glia, modulate vascular patterning around the spinal cord by acting as negative regulators. We found that radial glia ablation in zebrafish embryos leads to excessive sprouting of the trunk vessels around the spinal cord, and exclusively those of venous identity. Mechanistically, we determined that radial glia control this process via the Vegf decoy receptor sFlt1: sflt1 mutants exhibit the venous over-sprouting observed in radial glia-ablated larvae, and sFlt1 overexpression rescues it. Genetic mosaic analyses show that sFlt1 function in trunk endothelial cells can limit their over-sprouting. Together, our findings identify CNS-resident progenitors as critical angiogenic regulators that determine the precise patterning of the vasculature around the spinal cord, providing novel insights into vascular network formation around developing organs.


Asunto(s)
Diferenciación Celular/genética , Organogénesis/genética , Médula Espinal/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Proteínas de Pez Cebra/genética , Animales , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/metabolismo , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Mosaicismo , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Transducción de Señal/genética , Médula Espinal/irrigación sanguínea , Médula Espinal/crecimiento & desarrollo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
19.
Nat Commun ; 7: 11805, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27248505

RESUMEN

Endothelial cells (ECs) respond to shear stress by aligning in the direction of flow. However, how ECs respond to flow in complex in vivo environments is less clear. Here we describe an endothelial-specific transgenic zebrafish line, whereby the Golgi apparatus is labelled to allow for in vivo analysis of endothelial polarization. We find that most ECs polarize within 4.5 h after the onset of vigorous blood flow and, by manipulating cardiac function, observe that flow-induced EC polarization is a dynamic and reversible process. Based on its role in EC migration, we analyse the role of Apelin signalling in EC polarization and find that it is critical for this process. Knocking down Apelin receptor function in human primary ECs also affects their polarization. Our study provides new tools to analyse the mechanisms of EC polarization in vivo and reveals an important role in this process for a signalling pathway implicated in cardiovascular disease.


Asunto(s)
Receptores de Apelina/genética , Apelina/genética , Polaridad Celular , Quimiocinas/genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Apelina/metabolismo , Receptores de Apelina/metabolismo , Fenómenos Biomecánicos , Movimiento Celular , Quimiocinas/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Aparato de Golgi/metabolismo , Hemorreología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/ultraestructura , Humanos , Hibridación Fluorescente in Situ , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Transducción de Señal , Estrés Mecánico , Pez Cebra , Proteínas de Pez Cebra/metabolismo
20.
Cell Rep ; 17(6): 1595-1606, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27806298

RESUMEN

All mature blood cell types in the adult animal arise from hematopoietic stem and progenitor cells (HSPCs). However, the developmental cues regulating HSPC ontogeny are incompletely understood. In particular, the details surrounding a requirement for Wnt/ß-catenin signaling in the development of mature HSPCs are controversial and difficult to consolidate. Using zebrafish, we demonstrate that Wnt signaling is required to direct an amplification of HSPCs in the aorta. Wnt9a is specifically required for this process and cannot be replaced by Wnt9b or Wnt3a. This proliferative event occurs independently of initial HSPC fate specification, and the Wnt9a input is required prior to aorta formation. HSPC arterial amplification occurs prior to seeding of secondary hematopoietic tissues and proceeds, in part, through the cell cycle regulator myca (c-myc). Our results support a general paradigm, in which early signaling events, including Wnt, direct later HSPC developmental processes.


Asunto(s)
Aorta/citología , Aorta/embriología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Recuento de Células , Ciclo Celular , Proliferación Celular , Hemangioblastos/metabolismo , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA