Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Fish Biol ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965998

RESUMEN

Acoustic telemetry has been used to monitor the movement of aquatic animals in a broad range of aquatic environments. Despite their importance, mangrove habitats are understudied for the spatial ecology of elasmobranchs, with acoustic telemetry rarely used inside mangrove habitats. One reason for this may be a general assumption that acoustic signals would not be able to be detected by receivers in such shallow, structurally complex, environments. This study tested whether acoustic receivers can be used inside mangrove habitats to track the movement of sharks and rays. Thirty-eight receivers were deployed in a mangrove system in Pioneer Bay, Orpheus Island, Great Barrier Reef, including inside mangroves, mangrove edges, and adjacent reef flat areas. The detection range and receiver performance metrics, such as code detection efficiency, rejection coefficient, and noise quotient, were examined and tested among habitats. The results highlighted that the signal from transmitters was successfully detected inside mangrove habitats as well as on the adjacent reef flat. The range to detect at least 50% of transmissions was up to 20 m inside mangroves and up to 120 m outside mangroves. The performance metrics of acoustic receivers inside the mangrove habitat were characterized by low background noise, low rejection rates, and reasonably high code detection efficiency. Furthermore, this study tested the application of this method on juvenile blacktip reef shark Carcharhinus melanopterus and mangrove whipray Urogymnus granulatus, and demonstrated that it can be used to successfully track animals inside mangrove habitat. This novel method could reveal further information on how sharks and rays use mangrove habitats.

2.
Conserv Biol ; 37(1): e13917, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35435294

RESUMEN

Marine protected areas (MPAs) are key tools in addressing the global decline of sharks and rays, and marine parks and shark sanctuaries of various configurations have been established to conserve shark populations. However, assessments of their efficacy are compromised by inconsistent terminology, lack of standardized approaches to assess how MPAs contribute to shark and ray conservation, and ambiguity about how to integrate movement data in assessment processes. We devised a conceptual framework to standardize key terms (e.g., protection, contribution, potential impact, risk, threat) and used the concept of portfolio risk to identify key attributes of sharks and rays (assets), the threats they face (portfolio risk), and the specific role of MPAs in risk mitigation (insurance). Movement data can be integrated into the process by informing risk exposure and mitigation through MPAs. The framework is operationalized by posing 8 key questions that prompt practitioners to consider the assessment scope, MPA type and purpose, range of existing and potential threats, species biology and ecology, and management and operational contexts. Ultimately, MPA contributions to shark and ray conservation differ according to a complex set of human and natural factors and interactions that should be carefully considered in MPA design, implementation, and evaluation.


Marcos conceptuales y preguntas clave para evaluar la contribución de las áreas marinas protegidas a la conservación de tiburones y rayas Resumen Las áreas marinas protegidas (AMP) son herramientas importantes para manejar la declinación mundial de tiburones y rayas, por lo que se han establecido parques marinos y santuarios de diversas configuraciones para conservar las poblaciones de tiburones. Sin embargo, el análisis de su eficiencia está compuesto por una terminología inconstante, la falta de estrategias estandarizadas para evaluar cómo las AMP contribuyen a la conservación de tiburones y rayas, y una ambigüedad sobre cómo integrar la información sobre movimientos en los procesos de evaluación. Diseñamos un marco conceptual para estandarizar los términos más importantes (p. ej.: protección, contribución, impacto potencial, amenaza, riesgo) y usamos el concepto de riesgo de portafolio para identificar los atributos clave de los tiburones y las rayas (activos), las amenazas que enfrentan (riesgo de portafolio) y el papel específico que juegan las AMP en la mitigación del riesgo (seguro). La información sobre los movimientos puede integrarse al proceso al guiar la exposición y mitigación del riesgo con las AMP. El marco conceptual es operado con el planteamiento de ocho preguntas clave que invitan a los practicantes a considerar el enfoque de la evaluación, el tipo de AMP y su propósito, gama de amenazas existentes y potenciales, la biología y ecología de las especies, y los contextos operativos y de manejo. Finalmente, las contribuciones que tienen las AMP a la conservación de los tiburones y las rayas difieren de acuerdo con un conjunto complejo de factores naturales y humanos e interacciones que deberían considerarse cuidadosamente en el diseño, implementación y evaluación de la AMP.


Asunto(s)
Conservación de los Recursos Naturales , Tiburones , Animales , Ecología , Ecosistema , Explotaciones Pesqueras
3.
Conserv Biol ; 36(2): e13807, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34312893

RESUMEN

Marine fisheries in coastal ecosystems in many areas of the world have historically removed large-bodied individuals, potentially impairing ecosystem functioning and the long-term sustainability of fish populations. Reporting on size-based indicators that link to food-web structure can contribute to ecosystem-based management, but the application of these indicators over large (cross-ecosystem) geographical scales has been limited to either fisheries-dependent catch data or diver-based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large-bodied fished species. We obtained data on the body-size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo-video (stereo-BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No-take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal-size fishes typically declined as human impact increased. Our large-scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no-take marine reserves in protecting large-bodied fishes across a broad range of species and ecosystem configurations.


Las pesquerías marinas de los ecosistemas costeros en muchas áreas del mundo históricamente han removido a individuos de gran tamaño, potencialmente perjudicando el funcionamiento ambiental y la sostenibilidad a largo plazo de las poblaciones de peces. Los reportes sobre los indicadores basados en el tamaño que se vinculan con la estructura de la red alimenticia pueden contribuir al manejo basado en el ecosistema, aunque la aplicación de estos indicadores a grandes (inter-ecosistemas) escalas geográficas ha estado limitada a datos de captura dependientes de las pesquerías o métodos basados en el buceo restringidos a aguas someras (<20 m), lo cual puede representar erróneamente la abundancia de peces de gran tamaño capturados para la pesca. Obtuvimos los datos de la estructura del tamaño corporal de 82 teleósteos marinos demersales focalizados por razones recreativas o comerciales tomados de 2,904 despliegues de video estéreo subacuático remoto con cebo (stereo-BRUV, en inglés). El muestreo se realizó hasta los 50 metros de profundidad y abarcó aproximadamente 10,000 km del talud continental de Australia. El relieve marino, la profundidad del agua y la gravedad humana (es decir, un indicador de los impactos humanos) fueron los pronosticadores más sólidos de la probabilidad de incidencia de los peces de gran tamaño y de la abundancia de peces por encima del tamaño legal mínimo de captura. Las reservas marinas de protección total tienen un efecto positivo sobre la abundancia de los peces que están por encima del tamaño legal, aunque el efecto varió según el grupo de especies. Como contraste, los peces de tamaño sublegal fueron pronosticados de mejor manera usando gradientes de la temperatura de la superficie marina (media y varianza). En las áreas con un impacto humano reducido, los peces de gran tamaño corporal tenían hasta tres veces mayor probabilidad de aparecer y los peces de tamaño legal eran aproximadamente cinco veces más abundantes. Para los grupos de especies conspicuas con afinidades contrastantes de hábitat, ambiente y biogeografía, la abundancia de peces de tamaño legal normalmente declinó conforme aumentó el impacto humano. Nuestros análisis cuantitativos a gran escala resaltan la importancia conjunta que tienen la complejidad marina, las regiones con una huella humana reducida y las reservas marinas de protección total para la protección de los peces de gran tamaño corporal en una extensa gama de especies y configuraciones ecosistémicas. Efectos de la Huella Humana y los Factores Biofísicos sobre la Estructura del Tamaño Corporal de Especies Marinas Capturadas para la Pesca.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Australia , Tamaño Corporal , Explotaciones Pesqueras , Peces , Humanos
4.
Glob Chang Biol ; 27(15): 3432-3447, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34015863

RESUMEN

Marine reserves are a key tool for the conservation of marine biodiversity, yet only ~2.5% of the world's oceans are protected. The integration of marine reserves into connected networks representing all habitats has been encouraged by international agreements, yet the benefits of this design has not been tested empirically. Australia has one of the largest systems of marine reserves, providing a rare opportunity to assess how connectivity influences conservation success. An Australia-wide dataset was collected using baited remote underwater video systems deployed across a depth range from 0 to 100 m to assess the effectiveness of marine reserves for protecting teleosts subject to commercial and recreational fishing. A meta-analytical comparison of 73 fished species within 91 marine reserves found that, on average, marine reserves had 28% greater abundance and 53% greater biomass of fished species compared to adjacent areas open to fishing. However, benefits of protection were not observed across all reserves (heterogeneity), so full subsets generalized additive modelling was used to consider factors that influence marine reserve effectiveness, including distance-based and ecological metrics of connectivity among reserves. Our results suggest that increased connectivity and depth improve the aforementioned marine reserve benefits and that these factors should be considered to optimize such benefits over time. We provide important guidance on factors to consider when implementing marine reserves for the purpose of increasing the abundance and size of fished species, given the expected increase in coverage globally. We show that marine reserves that are highly protected (no-take) and designed to optimize connectivity, size and depth range can provide an effective conservation strategy for fished species in temperate and tropical waters within an overarching marine biodiversity conservation framework.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Animales , Australia , Ecosistema , Explotaciones Pesqueras , Peces , Océanos y Mares
5.
Biol Conserv ; 256: 108995, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34580542

RESUMEN

COVID-19 restrictions have led to an unprecedented global hiatus in anthropogenic activities, providing a unique opportunity to assess human impact on biological systems. Here, we describe how a national network of acoustic tracking receivers can be leveraged to assess the effects of human activity on animal movement and space use during such global disruptions. We outline variation in restrictions on human activity across Australian states and describe four mechanisms affecting human interactions with the marine environment: 1) reduction in economy and trade changing shipping traffic; 2) changes in export markets affecting commercial fisheries; 3) alterations in recreational activities; and 4) decline in tourism. We develop a roadmap for the analysis of acoustic tracking data across various scales using Australia's national Integrated Marine Observing System (IMOS) Animal Tracking Facility as a case study. We illustrate the benefit of sustained observing systems and monitoring programs by assessing how a 51-day break in white shark (Carcharodon carcharias) cage-diving tourism due to COVID-19 restrictions affected the behaviour and space use of two resident species. This cessation of tourism activities represents the longest break since cage-diving vessels started day trips in this area in 2007. Long-term monitoring of the local environment reveals that the activity space of yellowtail kingfish (Seriola lalandi) was reduced when cage-diving boats were absent compared to periods following standard tourism operations. However, white shark residency and movements were not affected. Our roadmap is globally applicable and will assist researchers in designing studies to assess how anthropogenic activities can impact animal movement and distributions during regional, short-term through to major, unexpected disruptions like the COVID-19 pandemic.

6.
J Environ Manage ; 289: 112375, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33813301

RESUMEN

The much-publicized threats to coral reef systems necessitate a considered management response based on comprehensive ecological data. However, data from large reef systems commonly originate from multiple monitoring programs that use different methods, each with distinct biases that limit united assessments of ecological status. The effective integration of data from different monitoring methods would allow better assessment of system status and hence, more informed management. Here we examine the scope for comparability and complementarity of fish data from two different methods used on Australia's Great Barrier Reef (GBR): underwater visual census (UVC) and baited remote underwater video stations (BRUVS). We compared commonly reported reef fish measures from UVC and BRUVS on similar reef slope habitats of three central GBR reefs. Both methods recorded similar estimates of total species richness, although ~30% of recorded species were not common to both methods. There were marked differences between methods in sub-group species richness, frequency of species occurrences, relative abundances of taxa and assemblage structure. The magnitude and orientation of inter-method differences were often inconsistent among taxa. However, each method better categorized certain components of fish communities: BRUVS sampled more predatory species in higher numbers while UVC was similarly better at sampling damselfishes (Pomacentridae). Our results suggest limited scope for direct or adjusted comparisons of data from UVC and BRUVS. Conversely, complementary aspects of the two methods confirm that their integration in monitoring programs will provide a more complete and extensive assessment of reef fish status for managers than from either method alone.


Asunto(s)
Biodiversidad , Censos , Animales , Arrecifes de Coral , Ecosistema , Peces
7.
Ecol Appl ; 27(4): 1031-1049, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28295789

RESUMEN

This paper reviews the use of acoustic telemetry as a tool for addressing issues in fisheries management, and serves as the lead to the special Feature Issue of Ecological Applications titled Acoustic Telemetry and Fisheries Management. Specifically, we provide an overview of the ways in which acoustic telemetry can be used to inform issues central to the ecology, conservation, and management of exploited and/or imperiled fish species. Despite great strides in this area in recent years, there are comparatively few examples where data have been applied directly to influence fisheries management and policy. We review the literature on this issue, identify the strengths and weaknesses of work done to date, and highlight knowledge gaps and difficulties in applying empirical fish telemetry studies to fisheries policy and practice. We then highlight the key areas of management and policy addressed, as well as the challenges that needed to be overcome to do this. We conclude with a set of recommendations about how researchers can, in consultation with stock assessment scientists and managers, formulate testable scientific questions to address and design future studies to generate data that can be used in a meaningful way by fisheries management and conservation practitioners. We also urge the involvement of relevant stakeholders (managers, fishers, conservation societies, etc.) early on in the process (i.e., in the co-creation of research projects), so that all priority questions and issues can be addressed effectively.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras , Peces , Telemetría/métodos , Animales , Telemetría/instrumentación
8.
J Exp Biol ; 219(Pt 21): 3447-3454, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27591306

RESUMEN

Cutaneous gas exchange allows some air-breathing diving ectotherms to supplement their pulmonary oxygen uptake, which may allow prolongation of dives and an increased capacity to withstand anthropogenic and natural threatening processes that increase submergence times. However, little is known of the interplay between metabolism, bimodal oxygen uptake and activity levels across thermal environments in diving ectotherms. Here, we show in two species of sea snake (spine-bellied sea snake, Hydrophis curtus; and elegant sea snake, Hydrophis elegans) that increasing temperature elevates surfacing rate, increases total oxygen consumption and decreases dive duration. The majority of dives observed in both species remained within estimated maximal aerobic limits. While cutaneous gas exchange accounted for a substantial proportion of total oxygen consumption (up to 23%), unexpectedly it was independent of water temperature and activity levels, suggesting a diffusion-limited mechanism. Our findings demonstrate that rising water temperature and a limited capability to up-regulate cutaneous oxygen uptake may compromise the proficiency with which sea snakes perform prolonged dives. This may hinder their capacity to withstand ongoing anthropogenic activities like trawl fishing, and increase their susceptibility to surface predation as their natural environments continue to warm.


Asunto(s)
Aire , Conducta Animal/fisiología , Buceo/fisiología , Elapidae/metabolismo , Elapidae/fisiología , Temperatura , Animales , Pulmón/fisiología , Consumo de Oxígeno/fisiología
9.
Ecol Appl ; 25(8): 2101-18, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26910942

RESUMEN

Understanding the efficacy of marine protected areas (MPAs) for wide-ranging predators is essential to designing effective management and conservation approaches. The use of acoustic monitoring and network analysis can improve our understanding of the spatial ecology and functional connectivity of reef-associated species, providing a useful approach for reef-based conservation planning. This study compared and contrasted the movement and connectivity of sharks with different degrees of reef association. We examined the residency, dispersal, degree of reef connectivity, and MPA use of grey reef (Carcharhinus amblyrhynchos), silvertip (C. albimarginatus), and bull (C. leucas) sharks monitored in the central Great Barrier Reef (GBR). An array of 56 acoustic receivers was used to monitor shark movements on 17 semi-isolated reefs. Carcharhinus amblyrhynchos and C. albimarginatus were detected most days at or near their tagging reef. However, while C. amblyrhynchos spent 80% of monitoring days in the array, C. albimarginatus was only detected 50% of the time. Despite both species moving similar distances (< 50 km), a large portion of the population of C. albimarginatus (71%) was detected on multiple reefs and moved more frequently between reefs and management zones than C. amblyrhynchos. Carcharhinus leucas was detected less than 20% of the time within the tagging array, and 42% of the population undertook long-range migrations to other arrays in the GBR. Networks derived for C. leucas were larger and more complex than those for C. amblyrhynchos and C. albimarginatus. Our findings suggest that protecting specific reefs based on prior knowledge (e.g., healthier reefs with high fish biomass) and increasing the level of protection to include nearby, closely spaced reef habitats (< 20 km) may perform better for species like C. albimarginatus than having either a single or a network of isolated MPAs. This design would also provide protection for larger male C. amblyrhynchos, which tend to disperse more and use larger areas than females. For wide-ranging sharks like C. leucas, a combination of spatial planning and other alternative measures is critical. Our findings demonstrate that acoustic monitoring can serve as a useful platform for designing more effective MPA networks for reef predators displaying a range of movement patterns.


Asunto(s)
Arrecifes de Coral , Tiburones/fisiología , Telemetría/veterinaria , Distribución Animal , Animales , Australia , Femenino , Masculino , Densidad de Población , Tiburones/clasificación , Especificidad de la Especie , Telemetría/métodos
10.
Mov Ecol ; 12(1): 31, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654348

RESUMEN

BACKGROUND: Acoustic telemetry has become a fundamental tool to monitor the movement of aquatic species. Advances in technology, in particular the development of batteries with lives of > 10 years, have increased our ability to track the long-term movement patterns of many species. However, logistics and financial constraints often dictate the locations and deployment duration of acoustic receivers. Consequently, there is often a compromise between optimal array design and affordability. Such constraints can hinder the ability to track marine animals over large spatial and temporal scales. Continental-scale receiver networks have increased the ability to study large-scale movements, but significant gaps in coverage often remain. METHODS: Since 2007, the Integrated Marine Observing System's Animal Tracking Facility (IMOS ATF) has maintained permanent receiver installations on the eastern Australian seaboard. In this study, we present the recent enhancement of the IMOS ATF acoustic tracking infrastructure in Queensland to collect data on large-scale movements of marine species in the northeast extent of the national array. Securing a relatively small initial investment for expanding receiver deployment and tagging activities in Queensland served as a catalyst, bringing together a diverse group of stakeholders (research institutes, universities, government departments, port corporations, industries, Indigenous ranger groups and tourism operators) to create an extensive collaborative network that could sustain the extended receiver coverage into the future. To fill gaps between existing installations and maximise the monitoring footprint, the new initiative has an atypical design, deploying many single receivers spread across 2,100 km of Queensland waters. RESULTS: The approach revealed previously unknown broad-scale movements for some species and highlights that clusters of receivers are not always required to enhance data collection. However, array designs using predominantly single receiver deployments are more vulnerable to data gaps when receivers are lost or fail, and therefore "redundancy" is a critical consideration when designing this type of array. CONCLUSION: Initial results suggest that our array enhancement, if sustained over many years, will uncover a range of previously unknown movements that will assist in addressing ecological, fisheries, and conservation questions for multiple species.

11.
Science ; 385(6708): adl2362, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39088608

RESUMEN

In ecosystems, sharks can be predators, competitors, facilitators, nutrient transporters, and food. However, overfishing and other threats have greatly reduced shark populations, altering their roles and effects on ecosystems. We review these changes and implications for ecosystem function and management. Macropredatory sharks are often disproportionately affected by humans but can influence prey and coastal ecosystems, including facilitating carbon sequestration. Like terrestrial predators, sharks may be crucial to ecosystem functioning under climate change. However, large ecosystem effects of sharks are not ubiquitous. Increasing human uses of oceans are changing shark roles, necessitating management consideration. Rebuilding key populations and incorporating shark ecological roles, including less obvious ones, into management efforts are critical for retaining sharks' functional value. Coupled social-ecological frameworks can facilitate these efforts.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Océanos y Mares , Tiburones , Animales , Humanos , Secuestro de Carbono , Cambio Climático , Cadena Alimentaria , Actividades Humanas , Conducta Predatoria , Tiburones/fisiología
12.
Nat Ecol Evol ; 8(6): 1118-1128, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38769434

RESUMEN

Many shark populations are in decline around the world, with severe ecological and economic consequences. Fisheries management and marine protected areas (MPAs) have both been heralded as solutions. However, the effectiveness of MPAs alone is questionable, particularly for globally threatened sharks and rays ('elasmobranchs'), with little known about how fisheries management and MPAs interact to conserve these species. Here we use a dedicated global survey of coral reef elasmobranchs to assess 66 fully protected areas embedded within a range of fisheries management regimes across 36 countries. We show that conservation benefits were primarily for reef-associated sharks, which were twice as abundant in fully protected areas compared with areas open to fishing. Conservation benefits were greatest in large protected areas that incorporate distinct reefs. However, the same benefits were not evident for rays or wide-ranging sharks that are both economically and ecologically important while also threatened with extinction. We show that conservation benefits from fully protected areas are close to doubled when embedded within areas of effective fisheries management, highlighting the importance of a mixed management approach of both effective fisheries management and well-designed fully protected areas to conserve tropical elasmobranch assemblages globally.


Asunto(s)
Conservación de los Recursos Naturales , Arrecifes de Coral , Explotaciones Pesqueras , Tiburones , Rajidae , Animales , Conservación de los Recursos Naturales/métodos
13.
Science ; 380(6650): 1155-1160, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37319199

RESUMEN

A global survey of coral reefs reveals that overfishing is driving resident shark species toward extinction, causing diversity deficits in reef elasmobranch (shark and ray) assemblages. Our species-level analysis revealed global declines of 60 to 73% for five common resident reef shark species and that individual shark species were not detected at 34 to 47% of surveyed reefs. As reefs become more shark-depleted, rays begin to dominate assemblages. Shark-dominated assemblages persist in wealthy nations with strong governance and in highly protected areas, whereas poverty, weak governance, and a lack of shark management are associated with depauperate assemblages mainly composed of rays. Without action to address these diversity deficits, loss of ecological function and ecosystem services will increasingly affect human communities.


Asunto(s)
Conservación de los Recursos Naturales , Arrecifes de Coral , Extinción Biológica , Tiburones , Rajidae , Animales , Humanos , Explotaciones Pesqueras , Biodiversidad
14.
Trends Ecol Evol ; 37(1): 79-94, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34563403

RESUMEN

Acoustic telemetry (AT) is a rapidly evolving technique used to track the movements of aquatic animals. As the capacity of AT research expands it is important to optimize its relevance to management while still pursuing key ecological questions. A global review of AT literature revealed region-specific research priorities underscoring the breadth of how AT is applied, but collectively demonstrated a lack of management-driven objectives, particularly relating to fisheries, climate change, and protection of species. In addition to the need for more research with direct pertinence to management, AT research should prioritize ongoing efforts to create collaborative opportunities, establish long-term and ecosystem-based monitoring, and utilize technological advancements to bolster aquatic policy and ecological understanding worldwide.


Asunto(s)
Ecosistema , Explotaciones Pesqueras , Acústica , Animales , Conservación de los Recursos Naturales/métodos , Telemetría/métodos
15.
Rapid Commun Mass Spectrom ; 25(8): 1008-16, 2011 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-21452377

RESUMEN

Stable isotopes of neonatal vertebrates reflect those of their mother's diet and foraging location. Evaluating feeding strategies and habitat use of neonates is consequently complicated by the maternal isotopic signal and its subsequent elimination with growth. Thus, methods that measure the loss of the maternal signal, i.e. when the isotopic signal of a neonate reflects its own diet, are needed. Values of δ(13)C and δ(15)N were measured in liver and muscle tissues of <1 year old bull (Carcharhinus leucas) and Atlantic sharpnose (Rhizoprionodon terraenovae) sharks and related to age using, total length, date sampled and umbilical scar stage (USS). We observed a decline in δ(13)C and δ(15)N values with age that was different among species, similar among isotopes, and greater in liver than in muscle; highlighting that retention of the maternal signal is dependent on species-specific life history and tissue characteristics. USS was most effective for assessing the loss of the maternal isotopic signal in the faster growing Atlantic sharpnose shark, but was less effective for the slower growing bull shark. Total length and date sampled were overall less effective and may be more informative for slower growing species when coupled with USS, as variable size at birth and misclassification of animals >1 year old, which remain in nursery habitats, increase the variability of the isotopic values. Consideration of the maternal signal and measuring its loss are thus necessary when analyzing the stable isotopes of young animals, as there is potential to misinterpret feeding strategies, over-estimate trophic position and incorrectly assign carbon source.


Asunto(s)
Animales Recién Nacidos/fisiología , Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , Tiburones/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Animales Recién Nacidos/metabolismo , Tamaño Corporal , Conducta Alimentaria , Histocitoquímica , Hígado/química , Hígado/metabolismo , Espectrometría de Masas , Músculos/química , Músculos/metabolismo , Tiburones/crecimiento & desarrollo , Tiburones/metabolismo , Distribución Tisular , Ombligo
16.
PLoS One ; 15(4): e0231142, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32271802

RESUMEN

Information on the spatial ecology of reef sharks is critical to understanding life-history patterns, yet gaps remain in our knowledge of how these species move and occupy space. Previous studies have focused on offshore reefs and atolls with little information available on the movement and space use of sharks utilising reef habitats closer to shore. Cross-shelf differences in physical and biological properties of reefs can alter regional ecosystem processes resulting in different movement patterns for resident sharks. Passive acoustic telemetry was used to examine residency, space use and depth use of 40 blacktip reef sharks, Carcharhinus melanopterus, on an inshore reef in Queensland, Australia, and assess temporal or biological influences. All sharks showed strong site-attachment to inshore reefs with residency highest among adult females. Sharks exhibited a sex-based, seasonal pattern in space use where males moved more, occupied more space and explored new areas during the reproductive season, while females utilised the same amount of space throughout the year, but shifted the location of the space used. A positive relationship was also observed between space use and size. There was evidence of seasonal site fidelity and long-distance movement with the coordinated, annual migration of two adult males to the study site during the mating season. Depth use was segregated with some small sharks occupying shallower depths than adults throughout the day and year, most likely as refuge from predation. Results highlight the importance of inshore reef habitats to blacktip reef sharks and provide evidence of connectivity with offshore reefs, at least for adult males.


Asunto(s)
Arrecifes de Coral , Movimiento/fisiología , Caracteres Sexuales , Tiburones/fisiología , Acústica , Animales , Femenino , Geografía , Islas , Masculino , Modelos Biológicos , Queensland , Factores de Tiempo
17.
PLoS One ; 15(12): e0244154, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33332427

RESUMEN

Baited remote underwater video stations (BRUVS) are increasingly being used to evaluate and monitor reef communities. Many BRUVS studies compare multiple sites sampled at single time points that may differ from the sampling time of another site. As BRUVS use grows in its application to provide data relevant to sustainable management, marine protected area success, and overall reef health, understanding repeatability of sampling results is vital. We examined the repeatability of BRUVS results for the elasmobranch community both within and between seasons and years, and explored environmental factors affecting abundances at two sites in Indonesia. On 956 BRUVS, 1139 elasmobranchs (69% rays, 31% sharks) were observed. We found consistent results in species composition and abundances within a season and across years. However, elasmobranch abundances were significantly higher in the wet season. The elasmobranch community was significantly different between the two sites sampled, one site being more coastal and easily accessed by fishermen. Our results demonstrate that while BRUVS are a reliable and repeatable method for surveying elasmobranchs, care must be taken in the timing of sampling between different regions to ensure that any differences observed are due to inherent differences amongst sampling areas as opposed to seasonal dissimilarities.


Asunto(s)
Arrecifes de Coral , Elasmobranquios/fisiología , Estaciones del Año , Grabación en Video/normas , Animales , Reproducibilidad de los Resultados , Grabación en Video/métodos
18.
PLoS One ; 15(5): e0231688, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32384087

RESUMEN

Effective sampling of marine communities is essential to provide robust estimates of species richness and abundance. Baited Remote Underwater Video Stations (BRUVS) are a useful tool in assessment of fish assemblages, but research on the optimal sampling period required to record common and rare elasmobranch species is limited. An appropriate 'soak time' (time elapsed between settlement of the BRUVS on the seabed and when it is hauled off the seabed) requires consideration, since longer soak times may be required to record species rare in occurrence, or sightings in areas of generally low elasmobranch abundance. We analysed 5352 BRUVS deployments with a range of soak times across 21 countries in the Coral Triangle and Pacific Ocean, to determine the optimal soak time required for sampling reef-associated elasmobranchs, considering species rarity, and community abundance at each site. Species were categorised into 4 'rarity' groups (very rare to common), by their relative occurrence in the dataset, defined simply by the proportion of BRUVS on which they occurred. Individual BRUVS were categorised into 3 'abundance' groups (low to high) by overall relative elasmobranch abundance, defined as total number of all elasmobranchs sighted per unit of sampling effort. The effects of BRUVS soak times, and levels of rarity and abundance groupings, on the time to first sighting (TFS) and time to maximum number of elasmobranchs observed (tMaxN) were examined. We found that TFS occurred earlier for species groups with high occurrence, and on BRUVS with high elasmobranch abundance, yet longer soak times were not essential to observe rarer species. Our models indicated an optimum of 95% of both sighting event types (TFS, tMaxN) was recorded within 63-77 minutes, and a soak time of 60 minutes recorded 78-94% of the elasmobranch sighting events recorded (78-94% of TFS events and 82-90% of tMaxN events), when species rarity and abundance on BRUVS was accounted for. Our study shows that deployments of ~ 77 minutes are optimal for recording all species we observed, although 60 minutes soak time effectively samples the majority of elasmobranch species in shallow coral reef habitats using BRUVS.


Asunto(s)
Biodiversidad , Arrecifes de Coral , Elasmobranquios , Grabación en Video/métodos , Animales , Conservación de los Recursos Naturales , Elasmobranquios/clasificación , Océano Pacífico
19.
Curr Biol ; 30(3): 480-489.e5, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31983638

RESUMEN

No-take marine protected areas (MPAs) are a commonly applied tool to reduce human fishing impacts on marine and coastal ecosystems. However, conservation outcomes of MPAs for mobile and long-lived predators such as sharks are highly variable. Here, we use empirical animal tracking data from 459 individual sharks and baited remote underwater video surveys undertaken in 36 countries to construct an empirically supported individual-based model that estimates the conservation effectiveness of MPAs for five species of coral reef-associated sharks (Triaenodon obesus, Carcharhinus melanopterus, Carcharhinus amblyrhynchos, Carcharhinus perezi, and Ginglymostoma cirratum). We demonstrate how species-specific individual movement traits can contribute to fishing mortality of sharks found within MPAs as they move outside to adjacent fishing grounds. We discovered that the world's officially recorded coral reef-based managed areas (with a median width of 9.4 km) would need to be enforced as strict no-take MPAs and up to 5 times larger to expect protection of the majority of individuals of the five investigated reef shark species. The magnitude of this effect depended on local abundances and fishing pressure, with MPAs required to be 1.6-2.6 times larger to protect the same number of Atlantic and Caribbean species, which occur at lower abundances than similar species in the western Pacific. Furthermore, our model was used to quantify partially substantial reductions (>50%) in fishing mortality resulting from small increases in MPA size, allowing us to bridge a critical gap between traditional conservation planning and fisheries management. Overall, our results highlight the challenge of relying on abundance data alone to ensure that estimates of shark conservation impacts of MPAs follow the precautionary approach.


Asunto(s)
Conservación de los Recursos Naturales , Tiburones , Animales , Arrecifes de Coral , Explotaciones Pesqueras , Especificidad de la Especie
20.
Trends Ecol Evol ; 34(5): 459-473, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30879872

RESUMEN

There have been efforts around the globe to track individuals of many marine species and assess their movements and distribution, with the putative goal of supporting their conservation and management. Determining whether, and how, tracking data have been successfully applied to address real-world conservation issues is, however, difficult. Here, we compile a broad range of case studies from diverse marine taxa to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats. Using these examples, we highlight pathways through which the past and future investment in collecting animal tracking data might be better used to achieve tangible conservation benefits.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA