Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Angiogenesis ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771392

RESUMEN

Induced pluripotent stem cell (iPSC) derived endothelial cells (iECs) have emerged as a promising tool for studying vascular biology and providing a platform for modelling various vascular diseases, including those with genetic origins. Currently, primary ECs are the main source for disease modelling in this field. However, they are difficult to edit and have a limited lifespan. To study the effects of targeted mutations on an endogenous level, we generated and characterized an iPSC derived model for venous malformations (VMs). CRISPR-Cas9 technology was used to generate a novel human iPSC line with an amino acid substitution L914F in the TIE2 receptor, known to cause VMs. This enabled us to study the differential effects of VM causative mutations in iECs in multiple in vitro models and assess their ability to form vessels in vivo. The analysis of TIE2 expression levels in TIE2L914F iECs showed a significantly lower expression of TIE2 on mRNA and protein level, which has not been observed before due to a lack of models with endogenous edited TIE2L914F and sparse patient data. Interestingly, the TIE2 pathway was still significantly upregulated and TIE2 showed high levels of phosphorylation. TIE2L914F iECs exhibited dysregulated angiogenesis markers and upregulated migration capability, while proliferation was not affected. Under shear stress TIE2L914F iECs showed reduced alignment in the flow direction and a larger cell area than TIE2WT iECs. In summary, we developed a novel TIE2L914F iPSC-derived iEC model and characterized it in multiple in vitro models. The model can be used in future work for drug screening for novel treatments for VMs.

2.
Mol Ther ; 31(12): 3531-3544, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37805713

RESUMEN

In vivo apoptosis of human mesenchymal stromal cells (MSCs) plays a critical role in delivering immunomodulation. Yet, caspase activity not only mediates the dying process but also death-independent functions that may shape the immunogenicity of apoptotic cells. Therefore, a better characterization of the immunological profile of apoptotic MSCs (ApoMSCs) could shed light on their mechanistic action and therapeutic applications. We analyzed the transcriptomes of MSCs undergoing apoptosis and identified several immunomodulatory factors and chemokines dependent on caspase activation following Fas stimulation. The ApoMSC secretome inhibited human T cell proliferation and activation, and chemoattracted monocytes in vitro. Both immunomodulatory activities were dependent on the cyclooxygenase2 (COX2)/prostaglandin E2 (PGE2) axis. To assess the clinical relevance of ApoMSC signature, we used the peripheral blood mononuclear cells (PBMCs) from a cohort of fistulizing Crohn's disease (CD) patients who had undergone MSC treatment (ADMIRE-CD). Compared with healthy donors, MSCs exposed to patients' PBMCs underwent apoptosis and released PGE2 in a caspase-dependent manner. Both PGE2 and apoptosis were significantly associated with clinical responses to MSCs. Our findings identify a new mechanism whereby caspase activation delivers ApoMSC immunosuppression. Remarkably, such molecular signatures could implicate translational tools for predicting patients' clinical responses to MSC therapy in CD.


Asunto(s)
Enfermedad de Crohn , Células Madre Mesenquimatosas , Humanos , Enfermedad de Crohn/genética , Enfermedad de Crohn/terapia , Dinoprostona/metabolismo , Leucocitos Mononucleares/metabolismo , Secretoma , Células Madre Mesenquimatosas/metabolismo , Inmunomodulación , Apoptosis , Caspasas
3.
Am J Respir Crit Care Med ; 206(12): 1463-1479, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998281

RESUMEN

Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal disorder. Two U.S. Food and Drug Administration-approved antifibrotic drugs, nintedanib and pirfenidone, slow the rate of decline in lung function, but responses are variable and side effects are common. Objectives: Using an in silico data-driven approach, we identified a robust connection between the transcriptomic perturbations in IPF disease and those induced by saracatinib, a selective Src kinase inhibitor originally developed for oncological indications. Based on these observations, we hypothesized that saracatinib would be effective at attenuating pulmonary fibrosis. Methods: We investigated the antifibrotic efficacy of saracatinib relative to nintedanib and pirfenidone in three preclinical models: 1) in vitro in normal human lung fibroblasts; 2) in vivo in bleomycin and recombinant Ad-TGF-ß (adenovirus transforming growth factor-ß) murine models of pulmonary fibrosis; and 3) ex vivo in mice and human precision-cut lung slices from these two murine models as well as patients with IPF and healthy donors. Measurements and Main Results: In each model, the effectiveness of saracatinib in blocking fibrogenic responses was equal or superior to nintedanib and pirfenidone. Transcriptomic analyses of TGF-ß-stimulated normal human lung fibroblasts identified specific gene sets associated with fibrosis, including epithelial-mesenchymal transition, TGF-ß, and WNT signaling that was uniquely altered by saracatinib. Transcriptomic analysis of whole-lung extracts from the two animal models of pulmonary fibrosis revealed that saracatinib reverted many fibrogenic pathways, including epithelial-mesenchymal transition, immune responses, and extracellular matrix organization. Amelioration of fibrosis and inflammatory cascades in human precision-cut lung slices confirmed the potential therapeutic efficacy of saracatinib in human lung fibrosis. Conclusions: These studies identify novel Src-dependent fibrogenic pathways and support the study of the therapeutic effectiveness of saracatinib in IPF treatment.


Asunto(s)
Fibrosis Pulmonar Idiopática , Inhibidores de Proteínas Quinasas , Animales , Humanos , Ratones , Bleomicina/efectos adversos , Fibroblastos/metabolismo , Fibrosis , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Pulmón/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Familia-src Quinasas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
4.
Fam Process ; 62(4): 1362-1376, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37670416

RESUMEN

Approximately 5% of people in the United States engage in some form of consensual non-monogamy (CNM; Archives of Sexual Behavior, 2018, 47, 1439). Therapists are becoming increasingly aware of the need to treat members of CNM relationships, including polyamorous relationships. To date, no research has been conducted and little has been written about applying existing couple therapy models normed on heterosexual, cisgender, monogamous relationships to CNM or polyamorous relationships. Emotionally focused therapy (EFT) is an empirically supported treatment for relationship distress that offers promise for working with polyamorous relationships due to the model's systemic and attachment theoretical foundations. We propose EFT is an ideal model for working with polyamorous relationships because of the focus on externalizing, interpersonal and intrapersonal emotional and experiential coherence, and the attachment bond. Building and sustaining multiple attachment relationships allows for the fulfilment of a diverse range of relational needs and wants as well as provides a secure base for individual and relational exploration. In this article, we first provide general information about polyamory and discuss the research on attachment theory and polyamory. We then provide a step-by-step conceptualization of how EFT therapists can expand the model to include extra-dyadic attachment relationships. In addition, we include specific ways in which the model would need to be adapted when working with polyamorous clients. We conclude with recommendations for EFT therapists working with polyamorous relationships.


Asunto(s)
Terapia de Parejas , Terapia Centrada en la Emoción , Humanos , Conducta Sexual/psicología , Emociones , Heterosexualidad
5.
J Biol Chem ; 295(15): 5136-5151, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32132173

RESUMEN

Increased plasma concentrations of lipoprotein(a) (Lp(a)) are associated with an increased risk for cardiovascular disease. Lp(a) is composed of apolipoprotein(a) (apo(a)) covalently bound to apolipoprotein B of low-density lipoprotein (LDL). Many of apo(a)'s potential pathological properties, such as inhibition of plasmin generation, have been attributed to its main structural domains, the kringles, and have been proposed to be mediated by their lysine-binding sites. However, available small-molecule inhibitors, such as lysine analogs, bind unselectively to kringle domains and are therefore unsuitable for functional characterization of specific kringle domains. Here, we discovered small molecules that specifically bind to the apo(a) kringle domains KIV-7, KIV-10, and KV. Chemical synthesis yielded compound AZ-05, which bound to KIV-10 with a Kd of 0.8 µm and exhibited more than 100-fold selectivity for KIV-10, compared with the other kringle domains tested, including plasminogen kringle 1. To better understand and further improve ligand selectivity, we determined the crystal structures of KIV-7, KIV-10, and KV in complex with small-molecule ligands at 1.6-2.1 Å resolutions. Furthermore, we used these small molecules as chemical probes to characterize the roles of the different apo(a) kringle domains in in vitro assays. These assays revealed the assembly of Lp(a) from apo(a) and LDL, as well as potential pathophysiological mechanisms of Lp(a), including (i) binding to fibrin, (ii) stimulation of smooth-muscle cell proliferation, and (iii) stimulation of LDL uptake into differentiated monocytes. Our results indicate that a small-molecule inhibitor targeting the lysine-binding site of KIV-10 can combat the pathophysiological effects of Lp(a).


Asunto(s)
Apolipoproteínas A/antagonistas & inhibidores , Apolipoproteínas A/metabolismo , Fibrina/metabolismo , Kringles/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Secuencia de Aminoácidos , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Homología de Secuencia
6.
Mol Cell Neurosci ; 107: 103533, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32717317

RESUMEN

The blood-brain barrier (BBB) constitutes the interface between the blood and the brain tissue. Its primary function is to maintain the tightly controlled microenvironment of the brain. Models of the BBB are useful for studying the development and maintenance of the BBB as well as diseases affecting it. Furthermore, BBB models are important tools in drug development and support the evaluation of the brain-penetrating properties of novel drug molecules. Currently used in vitro models of the BBB include immortalized brain endothelial cell lines and primary brain endothelial cells of human and animal origin. Unfortunately, many cell lines and primary cells do not recreate physiological restriction of transport in vitro. Human-induced pluripotent stem cell (iPSC)-derived brain endothelial cells have proven a promising alternative source of brain endothelial-like cells that replicate tight cell layers with low paracellular permeability. Given the possibility to generate large amounts of human iPSC-derived brain endothelial cells they are a feasible alternative when modelling the BBB in vitro. iPSC-derived brain endothelial cells form tight cell layers in vitro and their barrier properties can be enhanced through coculture with other cell types of the BBB. Currently, many different models of the BBB using iPSC-derived cells are under evaluation to study BBB formation, maintenance, disruption, drug transport and diseases affecting the BBB. This review summarizes important functions of the BBB and current efforts to create iPSC-derived BBB models in both static and dynamic conditions. In addition, it highlights key model requirements and remaining challenges for human iPSC-derived BBB models in vitro.


Asunto(s)
Transporte Biológico/fisiología , Barrera Hematoencefálica/metabolismo , Encéfalo/citología , Células Endoteliales/citología , Células Madre Pluripotentes Inducidas/citología , Animales , Barrera Hematoencefálica/patología , Técnicas de Cocultivo/métodos , Humanos
7.
Genes Cells ; 24(12): 836-847, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31651061

RESUMEN

We used single-cell RNA sequencing (seq) on several human induced pluripotent stem (iPS) cell-derived neural stem cell (NSC) lines and one fetal brain-derived NSC line to study inherent cell type heterogeneity at proliferating neural stem cell stage and uncovered predisposed presence of neurogenic and gliogenic progenitors. We observed heterogeneity in neurogenic progenitors that differed between the iPS cell-derived NSC lines and the fetal-derived NSC line, and we also observed differences in spontaneous differentiation potential for inhibitory and excitatory neurons between the iPS cell-derived NSC lines and the fetal-derived NSC line. In addition, using a recently published glia patterning protocol we enriched for gliogenic progenitors and generated glial cells from an iPS cell-derived NSC line.


Asunto(s)
Células Madre Embrionarias Humanas/citología , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Neurogénesis , Neuroglía/citología , Línea Celular , Linaje de la Célula , Células Cultivadas , Células Madre Embrionarias Humanas/clasificación , Humanos , Células Madre Pluripotentes Inducidas/clasificación , Análisis de la Célula Individual
8.
Nucleic Acids Res ; 46(16): 8417-8434, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30032200

RESUMEN

The mutation patterns at Cas9 targeted sites contain unique information regarding the nuclease activity and repair mechanisms in mammalian cells. However, analytical framework for extracting such information are lacking. Here, we present a novel computational platform called Rational InDel Meta-Analysis (RIMA) that enables an in-depth comprehensive analysis of Cas9-induced genetic alterations, especially InDels mutations. RIMA can be used to quantitate the contribution of classical microhomology-mediated end joining (c-MMEJ) pathway in the formation of mutations at Cas9 target sites. We used RIMA to compare mutational signatures at 15 independent Cas9 target sites in human A549 wildtype and A549-POLQ knockout cells to elucidate the role of DNA polymerase θ in c-MMEJ. Moreover, the single nucleotide insertions at the Cas9 target sites represent duplications of preceding nucleotides, suggesting that the flexibility of the Cas9 nuclease domains results in both blunt- and staggered-end cuts. Thymine at the fourth nucleotide before protospacer adjacent motif (PAM) results in a two-fold higher occurrence of single nucleotide InDels compared to guanine at the same position. This study provides a novel approach for the characterization of the Cas9 nucleases with improved accuracy in predicting genome editing outcomes and a potential strategy for homology-independent targeted genomic integration.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Reparación del ADN por Unión de Extremidades , Mutación INDEL , Programas Informáticos , Células A549 , Algoritmos , Secuencia de Bases , Línea Celular , ADN Polimerasa Dirigida por ADN/deficiencia , ADN Polimerasa Dirigida por ADN/metabolismo , Conjuntos de Datos como Asunto , Francisella/enzimología , Humanos , Motivos de Nucleótidos , Polimorfismo de Nucleótido Simple , Proteínas Recombinantes/metabolismo , Streptococcus pyogenes/enzimología , Especificidad por Sustrato , ADN Polimerasa theta
9.
Proc Natl Acad Sci U S A ; 114(42): 11127-11132, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973954

RESUMEN

Extracellular vesicles (EVs) are small vesicles released by cells to aid cell-cell communication and tissue homeostasis. Human islet amyloid polypeptide (IAPP) is the major component of amyloid deposits found in pancreatic islets of patients with type 2 diabetes (T2D). IAPP is secreted in conjunction with insulin from pancreatic ß cells to regulate glucose metabolism. Here, using a combination of analytical and biophysical methods in vitro, we tested whether EVs isolated from pancreatic islets of healthy patients and patients with T2D modulate IAPP amyloid formation. We discovered that pancreatic EVs from healthy patients reduce IAPP amyloid formation by peptide scavenging, but T2D pancreatic and human serum EVs have no effect. In accordance with these differential effects, the insulin:C-peptide ratio and lipid composition differ between EVs from healthy pancreas and EVs from T2D pancreas and serum. It appears that healthy pancreatic EVs limit IAPP amyloid formation via direct binding as a tissue-specific control mechanism.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Vesículas Extracelulares/fisiología , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/metabolismo , Placa Amiloide/metabolismo , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
10.
BMC Biol ; 17(1): 4, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30646909

RESUMEN

BACKGROUND: Plasma concentration of low-density lipoprotein (LDL) cholesterol is a well-established risk factor for cardiovascular disease. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which regulates cholesterol homeostasis, has recently emerged as an approach to reduce cholesterol levels. The development of humanized animal models is an important step to validate and study human drug targets, and use of genome and base editing has been proposed as a mean to target disease alleles. RESULTS: To address the lack of validated models to test the safety and efficacy of techniques to target human PCSK9, we generated a liver-specific human PCSK9 knock-in mouse model (hPCSK9-KI). We showed that plasma concentrations of total cholesterol were higher in hPCSK9-KI than in wildtype mice and increased with age. Treatment with evolocumab, a monoclonal antibody that targets human PCSK9, reduced cholesterol levels in hPCSK9-KI but not in wildtype mice, showing that the hypercholesterolemic phenotype was driven by overexpression of human PCSK9. CRISPR-Cas9-mediated genome editing of human PCSK9 reduced plasma levels of human and not mouse PCSK9, and in parallel reduced plasma concentrations of total cholesterol; genome editing of mouse Pcsk9 did not reduce cholesterol levels. Base editing using a guide RNA that targeted human and mouse PCSK9 reduced plasma levels of human and mouse PCSK9 and total cholesterol. In our mouse model, base editing was more precise than genome editing, and no off-target editing nor chromosomal translocations were identified. CONCLUSIONS: Here, we describe a humanized mouse model with liver-specific expression of human PCSK9 and a human-like hypercholesterolemia phenotype, and demonstrate that this mouse can be used to evaluate antibody and gene editing-based (genome and base editing) therapies to modulate the expression of human PCSK9 and reduce cholesterol levels. We predict that this mouse model will be used in the future to understand the efficacy and safety of novel therapeutic approaches for hypercholesterolemia.


Asunto(s)
Colesterol/sangre , Hipercolesterolemia/genética , Hígado/metabolismo , Proproteína Convertasa 9/genética , Animales , Modelos Animales de Enfermedad , Edición Génica , Genoma , Humanos , Hipercolesterolemia/metabolismo , Ratones , Ratones Transgénicos
12.
Stem Cells ; 36(12): 1816-1827, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30171748

RESUMEN

Cell-based models of the blood-brain barrier (BBB) are important for increasing the knowledge of BBB formation, degradation and brain exposure of drug substances. Human models are preferred over animal models because of interspecies differences in BBB structure and function. However, access to human primary BBB tissue is limited and has shown degeneration of BBB functions in vitro. Human induced pluripotent stem cells (iPSCs) can be used to generate relevant cell types to model the BBB with human tissue. We generated a human iPSC-derived model of the BBB that includes endothelial cells in coculture with pericytes, astrocytes and neurons. Evaluation of barrier properties showed that the endothelial cells in our coculture model have high transendothelial electrical resistance, functional efflux and ability to discriminate between CNS permeable and non-permeable substances. Whole genome expression profiling revealed transcriptional changes that occur in coculture, including upregulation of tight junction proteins, such as claudins and neurotransmitter transporters. Pathway analysis implicated changes in the WNT, TNF, and PI3K-Akt pathways upon coculture. Our data suggest that coculture of iPSC-derived endothelial cells promotes barrier formation on a functional and transcriptional level. The information about gene expression changes in coculture can be used to further improve iPSC-derived BBB models through selective pathway manipulation. Stem Cells 2018;36:1816-12.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Transcriptoma/fisiología , Diferenciación Celular , Humanos
13.
J Lipid Res ; 59(5): 830-842, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29563219

RESUMEN

apoE is the primary lipid carrier within the CNS and the strongest genetic risk factor for late onset Alzheimer's disease (AD). apoE is primarily lipidated via ABCA1, and both are under transcriptional regulation by the nuclear liver X receptor (LXR). Considerable evidence from genetic (using ABCA1 overexpression) and pharmacological (using synthetic LXR agonists) studies in AD mouse models suggests that increased levels of lipidated apoE can improve cognitive performance and, in some strains, can reduce amyloid burden. However, direct synthetic LXR ligands have hepatotoxic side effects that limit their clinical use. Here, we describe a set of small molecules, previously annotated as antagonists of the purinergic receptor, P2X7, which enhance ABCA1 expression and activity as well as apoE secretion, and are not direct LXR ligands. Furthermore, P2X7 is not required for these molecules to induce ABCA1 upregulation and apoE secretion, demonstrating that the ABCA1 and apoE effects are mechanistically independent of P2X7 inhibition. Hence, we have identified novel dual activity compounds that upregulate ABCA1 across multiple CNS cell types, including human astrocytes, pericytes, and microglia, through an indirect LXR mechanism and that also independently inhibit P2X7 receptor activity.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/agonistas , Apolipoproteínas E/agonistas , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Transportador 1 de Casete de Unión a ATP/metabolismo , Adamantano/análogos & derivados , Adamantano/química , Adamantano/farmacología , Animales , Apolipoproteínas E/metabolismo , Aziridinas/química , Aziridinas/farmacología , Benzamidas/química , Benzamidas/farmacología , Células Cultivadas , Humanos , Ratones , Ratones Noqueados , Estructura Molecular , Naftoquinonas/química , Naftoquinonas/farmacología , Antagonistas del Receptor Purinérgico P2X/química , Receptores Purinérgicos P2X7/deficiencia , Bibliotecas de Moléculas Pequeñas/química , Sulfonamidas/química , Sulfonamidas/farmacología , Regulación hacia Arriba/efectos de los fármacos
14.
Kidney Int ; 94(6): 1099-1110, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30072040

RESUMEN

Development of physiologically relevant cellular models with strong translatability to human pathophysiology is critical for identification and validation of novel therapeutic targets. Herein we describe a detailed protocol for generation of an advanced 3-dimensional kidney cellular model using induced pluripotent stem cells, where differentiation and maturation of kidney progenitors and podocytes can be monitored in live cells due to CRISPR/Cas9-mediated fluorescent tagging of kidney lineage markers (SIX2 and NPHS1). Utilizing these cell lines, we have refined the previously published procedures to generate a new, higher throughput protocol suitable for drug discovery. Using paraffin-embedded sectioning and whole-mount immunostaining, we demonstrated that organoids grown in suspension culture express key markers of kidney biology (WT1, ECAD, LTL, nephrin) and vasculature (CD31) within renal cortical structures with microvilli, tight junctions and podocyte foot processes visualized by electron microscopy. Additionally, the organoids resemble the adult kidney transcriptomics profile, thereby strengthening the translatability of our in vitro model. Thus, development of human nephron-like structures in vitro fills a major gap in our ability to assess the effect of potential treatment on key kidney structures, opening up a wide range of possibilities to improve clinical translation.


Asunto(s)
Sistemas CRISPR-Cas , Descubrimiento de Drogas/métodos , Edición Génica/métodos , Células Madre Pluripotentes Inducidas/fisiología , Riñón/fisiología , Organoides/fisiología , Podocitos/fisiología , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular , Linaje de la Célula , Regulación de la Expresión Génica , Genotipo , Ensayos Analíticos de Alto Rendimiento , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/ultraestructura , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/ultraestructura , Fenotipo , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/ultraestructura , Factores de Tiempo , Transcriptoma
15.
Cell Stem Cell ; 31(3): 292-311, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38366587

RESUMEN

Advances in hiPSC isolation and reprogramming and hPSC-CM differentiation have prompted their therapeutic application and utilization for evaluating potential cardiovascular safety liabilities. In this perspective, we showcase key efforts toward the large-scale production of hiPSC-CMs, implementation of hiPSC-CMs in industry settings, and recent clinical applications of this technology. The key observations are a need for traceable gender and ethnically diverse hiPSC lines, approaches to reduce cost of scale-up, accessible clinical trial datasets, and transparent guidelines surrounding the safety and efficacy of hiPSC-based therapies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Diferenciación Celular
16.
Cell Mol Immunol ; 20(6): 570-582, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37185486

RESUMEN

Mesenchymal stromal cells (MSCs) have been extensively tested for the treatment of numerous clinical conditions and have demonstrated good safety but mixed efficacy. Although this outcome can be attributed in part to the heterogeneity of cell preparations, the lack of mechanistic understanding and tools to establish cell pharmacokinetics and pharmacodynamics, as well as the poorly defined criteria for patient stratification, have hampered the design of informative clinical trials. We and others have demonstrated that MSCs can rapidly undergo apoptosis after their infusion. Apoptotic MSCs are phagocytosed by monocytes/macrophages that are then reprogrammed to become anti-inflammatory cells. MSC apoptosis occurs when the cells are injected into patients who harbor activated cytotoxic T or NK cells. Therefore, the activation state of cytotoxic T or NK cells can be used as a biomarker to predict clinical responses to MSC treatment. Building on a large body of preexisting data, an alternative view on the mechanism of MSCs is that an inflammation-dependent MSC secretome is largely responsible for their immunomodulatory activity. We will discuss how these different mechanisms can coexist and are instructed by two different types of MSC "licensing": one that is cell-contact dependent and the second that is mediated by inflammatory cytokines. The varied and complex mechanisms by which MSCs can orchestrate inflammatory responses and how this function is specifically driven by inflammation support a physiological role for tissue stroma in tissue homeostasis, and it acts as a sensor of damage and initiator of tissue repair by reprogramming the inflammatory environment.


Asunto(s)
Apoptosis , Células Madre Mesenquimatosas , Humanos , Proliferación Celular , Inflamación/metabolismo , Homeostasis
17.
Lab Chip ; 23(14): 3226-3237, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37341452

RESUMEN

Modelling proximal tubule physiology and pharmacology is essential to understand tubular biology and guide drug discovery. To date, multiple models have been developed; however, their relevance to human disease has yet to be evaluated. Here, we report a 3D vascularized proximal tubule-on-a-multiplexed chip (3DvasPT-MC) device composed of co-localized cylindrical conduits lined with confluent epithelium and endothelium, embedded within a permeable matrix, and independently addressed by a closed-loop perfusion system. Each multiplexed chip contains six 3DvasPT models. We performed RNA-seq and compared the transcriptomic profile of proximal tubule epithelial cells (PTECs) and human glomerular endothelial cells (HGECs) seeded in our 3D vasPT-MCs and on 2D transwell controls with and without a gelatin-fibrin coating. Our results reveal that the transcriptional profile of PTECs is highly dependent on both the matrix and flow, while HGECs exhibit greater phenotypic plasticity and are affected by the matrix, PTECs, and flow. PTECs grown on non-coated Transwells display an enrichment of inflammatory markers, including TNF-a, IL-6, and CXCL6, resembling damaged tubules. However, this inflammatory response is not observed for 3D proximal tubules, which exhibit expression of kidney signature genes, including drug and solute transporters, akin to native tubular tissue. Likewise, the transcriptome of HGEC vessels resembled that of sc-RNAseq from glomerular endothelium when seeded on this matrix and subjected to flow. Our 3D vascularized tubule on chip model has utility for both renal physiology and pharmacology.


Asunto(s)
Células Endoteliales , Túbulos Renales Proximales , Humanos , Túbulos Renales Proximales/metabolismo , Epitelio , Riñón , Células Epiteliales/metabolismo , Fenotipo
18.
iScience ; 26(6): 106830, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37250770

RESUMEN

Apolipoprotein L1 (APOL1) high-risk genotypes are associated with increased risk of chronic kidney disease (CKD) in people of West African ancestry. Given the importance of endothelial cells (ECs) in CKD, we hypothesized that APOL1 high-risk genotypes may contribute to disease via EC-intrinsic activation and dysfunction. Single cell RNA sequencing (scRNA-seq) analysis of the Kidney Precision Medicine Project dataset revealed APOL1 expression in ECs from various renal vascular compartments. Utilizing two public transcriptomic datasets of kidney tissue from African Americans with CKD and a dataset of APOL1-expressing transgenic mice, we identified an EC activation signature; specifically, increased intercellular adhesion molecule 1 (ICAM-1) expression and enrichment in leukocyte migration pathways. In vitro, APOL1 expression in ECs derived from genetically modified human induced pluripotent stem cells and glomerular ECs triggered changes in ICAM-1 and platelet endothelial cell adhesion molecule 1 (PECAM-1) leading to an increase in monocyte attachment. Overall, our data suggest the involvement of APOL1 as an inducer of EC activation in multiple renal vascular beds with potential effects beyond the glomerular vasculature.

19.
Biomater Sci ; 10(11): 2972-2990, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35521809

RESUMEN

When decellularizing kidneys, it is important to maintain the integrity of the acellular extracellular matrix (ECM), including associated adhesion proteins and growth factors that allow recellularized cells to adhere and migrate according to ECM specificity. Kidney decellularization requires the ionic detergent sodium dodecyl sulfate (SDS); however, this results in a loss of ECM proteins important for cell adherence, migration, and growth, particularly glycosaminoglycan (GAG)-associated proteins. Here, we demonstrate that using submicellar concentrations of SDS results in a greater retention of structural proteins, GAGs, growth factors, and cytokines. When porcine kidney ECM scaffolds were recellularized using human adult primary renal epithelial cells (RECs), the ECM promoted cell survival and the uniform distribution of cells throughout the ECM. Cells maintained the expression of mature renal epithelial markers but did not organize on the ECM, indicating that mature cells are unable to migrate to specific locations on ECM scaffolds.


Asunto(s)
Proteínas de la Matriz Extracelular , Andamios del Tejido , Animales , Células Epiteliales , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Riñón/química , Porcinos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
20.
Sci Rep ; 11(1): 20827, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675338

RESUMEN

Non-alcoholic steatohepatitis (NASH) is a rising health challenge, with no approved drugs. We used a computational drug repositioning strategy to uncover a novel therapy for NASH, identifying a GABA-B receptor agonist, AZD3355 (Lesogaberan) previously evaluated as a therapy for esophageal reflux. AZD3355's potential efficacy in NASH was tested in human stellate cells, human precision cut liver slices (hPCLS), and in vivo in a well-validated murine model of NASH. In human stellate cells AZD3355 significantly downregulated profibrotic gene and protein expression. Transcriptomic analysis of these responses identified key regulatory nodes impacted by AZD3355, including Myc, as well as MAP and ERK kinases. In PCLS, AZD3355 down-regulated collagen1α1, αSMA and TNF-α mRNAs as well as secreted collagen1α1. In vivo, the drug significantly improved histology, profibrogenic gene expression, and tumor development, which was comparable to activity of obeticholic acid in a robust mouse model of NASH, but awaits further testing to determine its relative efficacy in patients. These data identify a well-tolerated clinical stage asset as a novel candidate therapy for human NASH through its hepatoprotective, anti-inflammatory and antifibrotic mechanisms of action. The approach validates computational methods to identify novel therapies in NASH in uncovering new pathways of disease development that can be rapidly translated into clinical trials.


Asunto(s)
Reposicionamiento de Medicamentos , Agonistas de Receptores GABA-B/uso terapéutico , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Ácidos Fosfínicos/uso terapéutico , Propilaminas/uso terapéutico , Adulto , Anciano , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Agonistas de Receptores GABA-B/farmacología , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ácidos Fosfínicos/farmacología , Propilaminas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA