Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(22): 15119-15129, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38785120

RESUMEN

We present an analysis of a set of molecular, electrical, and electronic properties for a large number of the cations of quaternary ammonium salts usually employed as supporting electrolytes in cathodic reduction reactions. The goal of the present study is to define a measure for the quality of a supporting electrolyte in terms of the yield of the reaction considered. We performed a principal component analysis using the normalized values of the properties in order to lower the number of relevant reaction coordinates and find that the integral variance of 13 properties can well be represented by three principal components. The yield of the electrochemical hydrodimerization of acrylonitrile employing different quaternary ammonium salts as supporting electrolytes was determined in a series of experiments. We found only a very weak correlation between the yield and the values of the properties but a strong correlation between the yield and the values of the most important principal component. Very similar results are obtained for two further existing systematic experimental studies of the impact of the supporting electrolyte on the yield of cathodic reductions. For all three example reactions, a supervised regression using the two most important principal components as variables yields excellent values for the coefficients of determination. For comparison, we also applied our methodology to sets of purely structure-based features that are usually employed in cheminformatics and obtained results of almost similar quality. We therefore conjecture that our methodology in combination with a small number of experiments can be used to predict the yield of a given cathodic reduction on the basis of the properties of the supporting electrolyte.

2.
Chem Asian J ; 18(14): e202300380, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37269542

RESUMEN

With LABS, an open source Python-based lab software is established that enables users to orchestrate automated synthesis setups. The software consists of a user-friendly interface for data input and system monitoring. A flexible backend architecture enables the integration of multiple lab devices. The software allows users to easily modify experimental parameters or routines and switch between different lab devices. Compared to previously published projects, we aim to provide a more widely applicable and easily customizable automation software for any experimental setup. The usefulness of this tool was demonstrated in the oxidative coupling of 2,4-dimethyl-phenol to the corresponding 2,2'-biphenol. In this context, the suitable electrolysis parameters for flow electrolysis were optimized by way of design of experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA