Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(18): 3360-3376.e11, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37699397

RESUMEN

Aging is associated with progressive phenotypic changes. Virtually all cellular phenotypes are produced by proteins, and their structural alterations can lead to age-related diseases. However, we still lack comprehensive knowledge of proteins undergoing structural-functional changes during cellular aging and their contributions to age-related phenotypes. Here, we conducted proteome-wide analysis of early age-related protein structural changes in budding yeast using limited proteolysis-mass spectrometry (LiP-MS). The results, compiled in online ProtAge catalog, unraveled age-related functional changes in regulators of translation, protein folding, and amino acid metabolism. Mechanistically, we found that folded glutamate synthase Glt1 polymerizes into supramolecular self-assemblies during aging, causing breakdown of cellular amino acid homeostasis. Inhibiting Glt1 polymerization by mutating the polymerization interface restored amino acid levels in aged cells, attenuated mitochondrial dysfunction, and led to lifespan extension. Altogether, this comprehensive map of protein structural changes enables identifying mechanisms of age-related phenotypes and offers opportunities for their reversal.


Asunto(s)
Senescencia Celular , Longevidad , Longevidad/genética , Polimerizacion , Aminoácidos
2.
Am J Hum Genet ; 111(4): 714-728, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579669

RESUMEN

Argininosuccinate lyase deficiency (ASLD) is a recessive metabolic disorder caused by variants in ASL. In an essential step in urea synthesis, ASL breaks down argininosuccinate (ASA), a pathognomonic ASLD biomarker. The severe disease forms lead to hyperammonemia, neurological injury, and even early death. The current treatments are unsatisfactory, involving a strict low-protein diet, arginine supplementation, nitrogen scavenging, and in some cases, liver transplantation. An unmet need exists for improved, efficient therapies. Here, we show the potential of a lipid nanoparticle-mediated CRISPR approach using adenine base editors (ABEs) for ASLD treatment. To model ASLD, we first generated human-induced pluripotent stem cells (hiPSCs) from biopsies of individuals homozygous for the Finnish founder variant (c.1153C>T [p.Arg385Cys]) and edited this variant using the ABE. We then differentiated the hiPSCs into hepatocyte-like cells that showed a 1,000-fold decrease in ASA levels compared to those of isogenic non-edited cells. Lastly, we tested three different FDA-approved lipid nanoparticle formulations to deliver the ABE-encoding RNA and the sgRNA targeting the ASL variant. This approach efficiently edited the ASL variant in fibroblasts with no apparent cell toxicity and minimal off-target effects. Further, the treatment resulted in a significant decrease in ASA, to levels of healthy donors, indicating restoration of the urea cycle. Our work describes a highly efficient approach to editing the disease-causing ASL variant and restoring the function of the urea cycle. This method relies on RNA delivered by lipid nanoparticles, which is compatible with clinical applications, improves its safety profile, and allows for scalable production.


Asunto(s)
Argininosuccinatoliasa , Aciduria Argininosuccínica , Humanos , Argininosuccinatoliasa/genética , Aciduria Argininosuccínica/genética , Aciduria Argininosuccínica/terapia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN Guía de Sistemas CRISPR-Cas , Urea , Edición Génica/métodos
3.
Nature ; 594(7863): 430-435, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34079124

RESUMEN

The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.


Asunto(s)
Competencia Celular , Transformación Celular Neoplásica , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Esterasas/metabolismo , Genes APC , Mutación , Adenoma/genética , Adenoma/patología , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Competencia Celular/genética , Diferenciación Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Medios de Cultivo Condicionados , Progresión de la Enfermedad , Esterasas/antagonistas & inhibidores , Esterasas/genética , Femenino , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Organoides/citología , Organoides/metabolismo , Organoides/patología , Células Madre/citología , Células Madre/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
4.
PLoS Genet ; 17(10): e1009855, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34634038

RESUMEN

Nutrient-dependent gene regulation critically contributes to homeostatic control of animal physiology in changing nutrient landscape. In Drosophila, dietary sugars activate transcription factors (TFs), such as Mondo-Mlx, Sugarbabe and Cabut, which control metabolic gene expression to mediate physiological adaptation to high sugar diet. TFs that correspondingly control sugar responsive metabolic genes under conditions of low dietary sugar remain, however, poorly understood. Here we identify a role for Drosophila GATA TF Grain in metabolic gene regulation under both low and high sugar conditions. De novo motif prediction uncovered a significant over-representation of GATA-like motifs on the promoters of sugar-activated genes in Drosophila larvae, which are regulated by Grain, the fly ortholog of GATA1/2/3 subfamily. grain expression is activated by sugar in Mondo-Mlx-dependent manner and it contributes to sugar-responsive gene expression in the fat body. On the other hand, grain displays strong constitutive expression in the anterior midgut, where it drives lipogenic gene expression also under low sugar conditions. Consistently with these differential tissue-specific roles, Grain deficient larvae display delayed development on high sugar diet, while showing deregulated central carbon and lipid metabolism primarily on low sugar diet. Collectively, our study provides evidence for the role of a metazoan GATA transcription factor in nutrient-responsive metabolic gene regulation in vivo.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Factores de Transcripción GATA/genética , Animales , Regulación de la Expresión Génica/genética , Larva/genética , Azúcares/metabolismo , Activación Transcripcional/genética
5.
EMBO Rep ; 22(2): e49602, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33369866

RESUMEN

Energy storage and growth are coordinated in response to nutrient status of animals. How nutrient-regulated signaling pathways control these processes in vivo remains insufficiently understood. Here, we establish an atypical MAP kinase, ERK7, as an inhibitor of adiposity and growth in Drosophila. ERK7 mutant larvae display elevated triacylglycerol (TAG) stores and accelerated growth rate, while overexpressed ERK7 is sufficient to inhibit lipid storage and growth. ERK7 expression is elevated upon fasting and ERK7 mutant larvae display impaired survival during nutrient deprivation. ERK7 acts in the fat body, the insect counterpart of liver and adipose tissue, where it controls the subcellular localization of chromatin-binding protein PWP1, a growth-promoting downstream effector of mTOR. PWP1 maintains the expression of sugarbabe, encoding a lipogenic Gli-similar family transcription factor. Both PWP1 and Sugarbabe are necessary for the increased growth and adiposity phenotypes of ERK7 loss-of-function animals. In conclusion, ERK7 is an anti-anabolic kinase that inhibits lipid storage and growth while promoting survival on fasting conditions.


Asunto(s)
Adiposidad , Quinasas MAP Reguladas por Señal Extracelular , Animales , Drosophila/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fosforilación , Transducción de Señal
6.
Genes Dev ; 27(4): 441-9, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23431056

RESUMEN

Endoplasmic reticulum (ER) stress is emerging as a potential contributor to the onset of type 2 diabetes by making cells insulin-resistant. However, our understanding of the mechanisms by which ER stress affects insulin response remains fragmentary. Here we present evidence that the ER stress pathway acts via a conserved signaling mechanism involving the protein kinase PERK to modulate cellular insulin responsiveness. Insulin signaling via AKT reduces activity of FOXO transcription factors. In some cells, PERK can promote insulin responsiveness. However, we found that PERK also acts oppositely via phosphorylation of FOXO to promote FOXO activity. Inhibition of PERK improves cellular insulin responsiveness at the level of FOXO activity. We suggest that the protein kinase PERK may be a promising pharmacological target for ameliorating insulin resistance.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Factores de Transcripción Forkhead/metabolismo , Resistencia a la Insulina/fisiología , eIF-2 Quinasa/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Células Hep G2 , Humanos , Células MCF-7 , Proteína Oncogénica v-akt/metabolismo , Fosforilación , Transporte de Proteínas
7.
EMBO J ; 34(11): 1538-53, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25916830

RESUMEN

Nutrient sensing pathways adjust metabolism and physiological functions in response to food intake. For example, sugar feeding promotes lipogenesis by activating glycolytic and lipogenic genes through the Mondo/ChREBP-Mlx transcription factor complex. Concomitantly, other metabolic routes are inhibited, but the mechanisms of transcriptional repression upon sugar sensing have remained elusive. Here, we characterize cabut (cbt), a transcription factor responsible for the repressive branch of the sugar sensing transcriptional network in Drosophila. We demonstrate that cbt is rapidly induced upon sugar feeding through direct regulation by Mondo-Mlx. We found that CBT represses several metabolic targets in response to sugar feeding, including both isoforms of phosphoenolpyruvate carboxykinase (pepck). Deregulation of pepck1 (CG17725) in mlx mutants underlies imbalance of glycerol and glucose metabolism as well as developmental lethality. Furthermore, we demonstrate that cbt provides a regulatory link between nutrient sensing and the circadian clock. Specifically, we show that a subset of genes regulated by the circadian clock are also targets of CBT. Moreover, perturbation of CBT levels leads to deregulation of the circadian transcriptome and circadian behavioral patterns.


Asunto(s)
Relojes Circadianos/fisiología , Proteínas de Drosophila/metabolismo , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Glucosa/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/fisiología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Glucosa/genética , Glicerol/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Factores de Transcripción/genética
8.
Annu Rev Genet ; 43: 389-410, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19694515

RESUMEN

Nutrition is a key regulator of tissue growth. In animals, nutritional status is monitored and signaled at both the cellular and systemic levels. The main mediator of cellular nutrient sensing is the protein kinase TOR (target of rapamycin). TOR receives information from levels of cellular amino acids and energy, and it regulates the activity of processes involved in cell growth, such as protein synthesis and autophagy. Insulin-like signaling is the main mechanism of systemic nutrient sensing and mediates its growth-regulatory functions largely through the phosphatidylinositol 3-kinase (PI3K)/AKT protein kinase pathway. Other nutrition-regulated hormonal mechanisms contribute to growth control by modulating the activity of insulin-like signaling. The pathways mediating signals from systemic and cellular levels converge, allowing cells to combine information from both sources. Here we give an overview of the mechanisms that adjust animal tissue growth in response to nutrition and highlight some general features of the signaling pathways involved.


Asunto(s)
Tamaño Corporal , Drosophila/fisiología , Alimentos , Animales , Insulina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
9.
BMC Genet ; 18(1): 13, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28193157

RESUMEN

BACKGROUND: One of the most commonly used quality measurements of pork is pH measured 24 h after slaughter. The most probable mode of inheritance for this trait is oligogenic with several known major genes, such as PRKAG3. In this study, we used whole-genome SNP genotypes of over 700 AI boars; after a quality check, 42,385 SNPs remained for association analysis. All the boars were purebred Finnish Yorkshire. To account for relatedness of the animals, a pedigree-based relationship matrix was used in a mixed linear model to test the effect of SNPs on pH measured from loin. A bioinformatics analysis was performed to identify the most promising genes in the significant regions related to meat quality. RESULTS: Genome-wide association study (GWAS) revealed three significant chromosomal regions: one on chromosome 3 (39.9 Mb-40.1 Mb) and two on chromosome 15 (58.5 Mb-60.5 Mb and 132 Mb-135 Mb including PRKAG3). A conditional analysis with a significant SNP in the PRKAG3 region, MARC0083357, as a covariate in the model retained the significant SNPs on chromosome 3. Even though linkage disequilibrium was relatively high over a long distance between MARC0083357 and other significant SNPs on chromosome 15, some SNPs retained their significance in the conditional analysis, even in the vicinity of PRKAG3. The significant regions harbored several genes, including two genes involved in cyclic AMP (cAMP) signaling: ADCY9 and CREBBP. Based on functional and transcription factor-gene networks, the most promising candidate genes for meat pH are ADCY9, CREBBP, TRAP1, NRG1, PRKAG3, VIL1, TNS1, and IGFBP5, and the key transcription factors related to these genes are HNF4A, PPARG, and Nkx2-5. CONCLUSIONS: Based on SNP association, pathway, and transcription factor analysis, we were able to identify several genes with potential to control muscle cell homeostasis and meat quality. The associated SNPs can be used in selection for better pork. We also showed that post-GWAS analysis reveals important information about the genes' potential role on meat quality. The gained information can be used in later functional studies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Carne Roja/análisis , Porcinos/genética , Animales , Genómica , Haplotipos , Concentración de Iones de Hidrógeno , Fenotipo , Polimorfismo de Nucleótido Simple
10.
PLoS Genet ; 10(11): e1004764, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25393288

RESUMEN

Insulin-like signalling is a conserved mechanism that coordinates animal growth and metabolism with nutrient status. In Drosophila, insulin-producing median neurosecretory cells (IPCs) regulate larval growth by secreting insulin-like peptides (dILPs) in a diet-dependent manner. Previous studies have shown that nutrition affects dILP secretion through humoral signals derived from the fat body. Here we uncover a novel mechanism that operates cell autonomously in the IPCs to regulate dILP secretion. We observed that impairment of ribosome biogenesis specifically in the IPCs strongly inhibits dILP secretion, which consequently leads to reduced body size and a delay in larval development. This response is dependent on p53, a known surveillance factor for ribosome biogenesis. A downstream effector of this growth inhibitory response is an atypical MAP kinase ERK7 (ERK8/MAPK15), which is upregulated in the IPCs following impaired ribosome biogenesis as well as starvation. We show that ERK7 is sufficient and essential to inhibit dILP secretion upon impaired ribosome biogenesis, and it acts epistatically to p53. Moreover, we provide evidence that p53 and ERK7 contribute to the inhibition of dILP secretion upon starvation. Thus, we conclude that a cell autonomous ribosome surveillance response, which leads to upregulation of ERK7, inhibits dILP secretion to impede tissue growth under limiting dietary conditions.


Asunto(s)
Proteínas de Drosophila/genética , Insulina/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteína p53 Supresora de Tumor/genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
11.
Genes Dev ; 23(17): 1998-2003, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19723762

RESUMEN

Turnover of cyclins plays a major role in oscillatory cyclin-dependent kinase (Cdk) activity and control of cell cycle progression. Here we present a novel cell cycle regulator, called minus, which influences Cyclin E turnover in Drosophila. minus mutants produce defects in cell proliferation, some of which are attributable to persistence of Cyclin E. Minus protein can interact physically with Cyclin E and the SCF Archipelago/Fbw7/Cdc4 ubiquitin-ligase complex. Minus does not affect dMyc, another known SCF(Ago) substrate in Drosophila. We propose that Minus contributes to cell cycle regulation in part by selectively controlling turnover of Cyclin E.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclina E/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/genética , Proliferación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Larva , Mutación/genética , Proteínas Nucleares/metabolismo
12.
J Exp Biol ; 219(Pt 10): 1488-94, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26944488

RESUMEN

Flying insects have the highest known mass-specific demand for oxygen, which makes it likely that reduced availability of oxygen might limit sustained flight, either instead of or in addition to the limitation due to metabolite resources. The Glanville fritillary butterfly (Melitaea cinxia) occurs as a large metapopulation in which adult butterflies frequently disperse between small local populations. Here, we examine how the interaction between oxygen availability and fuel use affects flight performance in the Glanville fritillary. Individuals were flown under either normoxic (21 kPa O2) or hypoxic (10 kPa O2) conditions and their flight metabolism was measured. To determine resource use, levels of circulating glucose, trehalose and whole-body triglyceride were recorded after flight. Flight performance was significantly reduced in hypoxic conditions. When flown under normoxic conditions, we observed a positive correlation among individuals between post-flight circulating trehalose levels and flight metabolic rate, suggesting that low levels of circulating trehalose constrains flight metabolism. To test this hypothesis experimentally, we measured the flight metabolic rate of individuals injected with a trehalase inhibitor. In support of the hypothesis, experimental butterflies showed significantly reduced flight metabolic rate, but not resting metabolic rate, in comparison to control individuals. By contrast, under hypoxia there was no relationship between trehalose and flight metabolic rate. Additionally, in this case, flight metabolic rate was reduced in spite of circulating trehalose levels that were high enough to support high flight metabolic rate under normoxic conditions. These results demonstrate a significant interaction between oxygen and energy availability for the control of flight performance.


Asunto(s)
Mariposas Diurnas/fisiología , Metabolismo Energético , Vuelo Animal/fisiología , Fritillaria/parasitología , Oxígeno/metabolismo , Animales , Metabolismo Basal/efectos de los fármacos , Metabolismo Basal/fisiología , Mariposas Diurnas/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Vuelo Animal/efectos de los fármacos , Glucosa/análisis , Hipoxia/metabolismo , Masculino , Análisis de Regresión , Descanso , Inanición/metabolismo , Trehalasa/antagonistas & inhibidores , Trehalasa/metabolismo , Trehalosa/análisis
13.
PLoS Genet ; 9(4): e1003438, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23593032

RESUMEN

Sugars are important nutrients for many animals, but are also proposed to contribute to overnutrition-derived metabolic diseases in humans. Understanding the genetic factors governing dietary sugar tolerance therefore has profound biological and medical significance. Paralogous Mondo transcription factors ChREBP and MondoA, with their common binding partner Mlx, are key sensors of intracellular glucose flux in mammals. Here we report analysis of the in vivo function of Drosophila melanogaster Mlx and its binding partner Mondo (ChREBP) in respect to tolerance to dietary sugars. Larvae lacking mlx or having reduced mondo expression show strikingly reduced survival on a diet with moderate or high levels of sucrose, glucose, and fructose. mlx null mutants display widespread changes in lipid and phospholipid profiles, signs of amino acid catabolism, as well as strongly elevated circulating glucose levels. Systematic loss-of-function analysis of Mlx target genes reveals that circulating glucose levels and dietary sugar tolerance can be genetically uncoupled: Krüppel-like transcription factor Cabut and carbonyl detoxifying enzyme Aldehyde dehydrogenase type III are essential for dietary sugar tolerance, but display no influence on circulating glucose levels. On the other hand, Phosphofructokinase 2, a regulator of the glycolysis pathway, is needed for both dietary sugar tolerance and maintenance of circulating glucose homeostasis. Furthermore, we show evidence that fatty acid synthesis, which is a highly conserved Mondo-Mlx-regulated process, does not promote dietary sugar tolerance. In contrast, survival of larvae with reduced fatty acid synthase expression is sugar-dependent. Our data demonstrate that the transcriptional network regulated by Mondo-Mlx is a critical determinant of the healthful dietary spectrum allowing Drosophila to exploit sugar-rich nutrient sources.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Sacarosa en la Dieta/metabolismo , Drosophila melanogaster , Redes Reguladoras de Genes/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas de Ciclo Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ácidos Grasos/biosíntesis , Ácidos Grasos/genética , Regulación de la Expresión Génica , Glucosa/administración & dosificación , Larva/genética , Larva/crecimiento & desarrollo , Proteínas Nucleares/genética , Fosfofructoquinasa-2 , Unión Proteica
14.
J Biol Chem ; 289(23): 16252-61, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24778181

RESUMEN

The Cdk8 (cyclin-dependent kinase 8) module of Mediator integrates regulatory cues from transcription factors to RNA polymerase II. It consists of four subunits where Med12 and Med13 link Cdk8 and cyclin C (CycC) to core Mediator. Here we have investigated the contributions of the Cdk8 module subunits to transcriptional regulation using RNA interference in Drosophila cells. Genome-wide expression profiling demonstrated separation of Cdk8-CycC and Med12-Med13 profiles. However, transcriptional regulation by Cdk8-CycC was dependent on Med12-Med13. This observation also revealed that Cdk8-CycC and Med12-Med13 often have opposite transcriptional effects. Interestingly, Med12 and Med13 profiles overlapped significantly with that of the GATA factor Serpent. Accordingly, mutational analyses indicated that GATA sites are required for Med12-Med13 regulation of Serpent-dependent genes. Med12 and Med13 were also found to be required for Serpent-activated innate immunity genes in defense to bacterial infection. The results reveal a novel role for the Cdk8 module in Serpent-dependent transcription and innate immunity.


Asunto(s)
Quinasa 8 Dependiente de Ciclina/genética , Perfilación de la Expresión Génica , Inmunidad Innata/genética , Transcripción Genética , Animales , Drosophila , Reacción en Cadena de la Polimerasa , Interferencia de ARN
15.
Semin Cell Dev Biol ; 23(6): 640-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22406740

RESUMEN

The paralogous transcription factors ChREBP and MondoA, together with their common binding partner Mlx, have emerged as key mediators of intracellular glucose sensing. By regulating target genes involved in glycolysis and lipogenesis, they mediate metabolic adaptation to changing glucose levels. As disturbed glucose homeostasis plays a central role in human metabolic diseases and as cancer cells often display altered glucose metabolism, better understanding of cellular glucose sensing will likely uncover new therapeutic opportunities. Here we review the regulation, function and evolutionary conservation of the ChREBP/MondoA-Mlx glucose sensing system and discuss possible directions for future research.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Metabolismo de los Hidratos de Carbono , Glucosa/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Metabolismo Energético , Humanos , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Elementos de Respuesta , Transcripción Genética
16.
PLoS Genet ; 7(12): e1002429, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22242005

RESUMEN

The insulin/IGF-activated AKT signaling pathway plays a crucial role in regulating tissue growth and metabolism in multicellular animals. Although core components of the pathway are well defined, less is known about mechanisms that adjust the sensitivity of the pathway to extracellular stimuli. In humans, disturbance in insulin sensitivity leads to impaired clearance of glucose from the blood stream, which is a hallmark of diabetes. Here we present the results of a genetic screen in Drosophila designed to identify regulators of insulin sensitivity in vivo. Components of the MAPK/ERK pathway were identified as modifiers of cellular insulin responsiveness. Insulin resistance was due to downregulation of insulin-like receptor gene expression following persistent MAPK/ERK inhibition. The MAPK/ERK pathway acts via the ETS-1 transcription factor Pointed. This mechanism permits physiological adjustment of insulin sensitivity and subsequent maintenance of circulating glucose at appropriate levels.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Glucosa/metabolismo , Resistencia a la Insulina/genética , Insulina/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Animales , Técnicas de Cultivo de Célula , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Insulina/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/genética
17.
Sci Adv ; 10(6): eadi2671, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38335286

RESUMEN

The adult intestine is a regionalized organ, whose size and cellular composition are adjusted in response to nutrient status. This involves dynamic regulation of intestinal stem cell (ISC) proliferation and differentiation. How nutrient signaling controls cell fate decisions to drive regional changes in cell-type composition remains unclear. Here, we show that intestinal nutrient adaptation involves region-specific control of cell size, cell number, and differentiation. We uncovered that activation of mTOR complex 1 (mTORC1) increases ISC size in a region-specific manner. mTORC1 activity promotes Delta expression to direct cell fate toward the absorptive enteroblast lineage while inhibiting secretory enteroendocrine cell differentiation. In aged flies, the ISC mTORC1 signaling is deregulated, being constitutively high and unresponsive to diet, which can be mitigated through lifelong intermittent fasting. In conclusion, mTORC1 signaling contributes to the ISC fate decision, enabling regional control of intestinal cell differentiation in response to nutrition.


Asunto(s)
Mucosa Intestinal , Intestinos , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Mucosa Intestinal/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nutrientes , Células Madre/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Drosophila
18.
Cell Metab ; 7(1): 21-32, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18177722

RESUMEN

Animals use the insulin/TOR signaling pathway to mediate their response to fluctuations in nutrient availability. Energy and amino acids are monitored at the single-cell level via the TOR branch of the pathway and systemically via insulin signaling to regulate cellular growth and metabolism. Using a combination of genetics, expression profiling, and chromatin immunoprecipitation, we examine nutritional control of gene expression and identify the transcription factor Myc as an important mediator of TOR-dependent regulation of ribosome biogenesis. We also identify myc as a direct target of FOXO and provide genetic evidence that Myc has a key role in mediating the effects of TOR and FOXO on growth and metabolism. FOXO and TOR also converge to regulate protein synthesis, acting via 4E-BP and Lk6, regulators of the translation factor eIF4E. This study uncovers a network of convergent regulation of protein biosynthesis by the FOXO and TOR branches of the nutrient-sensing pathway.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Insulina/metabolismo , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Animales Modificados Genéticamente , Células Cultivadas , Drosophila/citología , Drosophila/genética , Proteínas de Drosophila/genética , Electroforesis en Gel de Poliacrilamida , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Ayuno , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Immunoblotting , Inmunoprecipitación , Insulina/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal , Serina-Treonina Quinasas TOR , Transcripción Genética
19.
FEBS Lett ; 597(5): 601-607, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36266944

RESUMEN

Extracellular signal-regulated kinase 7 (ERK7), also known as ERK8 and MAPK15, is an atypical member of the MAP kinase family. Compared with other MAP kinases, the biological roles of ERK7 remain poorly understood. Recent work, however, has revealed several novel functions for ERK7. These include a highly conserved essential role in ciliogenesis, the ability to control cell growth, metabolism and autophagy, as well as the maintenance of genomic integrity. ERK7 functions through phosphorylation-dependent and -independent mechanisms and it is activated by cellular stressors, including DNA-damaging agents, and nutrient deprivation. Here, we summarize recent developments in understanding ERK7 function, emphasizing its conserved roles in cellular and physiological regulation.


Asunto(s)
Autofagia , Quinasas MAP Reguladas por Señal Extracelular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fosforilación , Proliferación Celular , Ciclo Celular
20.
Cell Calcium ; 114: 102782, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37481871

RESUMEN

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER Ca2+-release channels that control a broad set of cellular processes. Animal models lacking IP3Rs in different combinations display severe developmental phenotypes. Given the importance of IP3Rs in human diseases, we investigated their role in human induced pluripotent stem cells (hiPSC) by developing single IP3R and triple IP3R knockouts (TKO). Genome edited TKO-hiPSC lacking all three IP3R isoforms, IP3R1, IP3R2, IP3R3, failed to generate Ca2+ signals in response to agonists activating GPCRs, but retained stemness and pluripotency. Steady state metabolite profiling and flux analysis of TKO-hiPSC indicated distinct alterations in tricarboxylic acid cycle metabolites consistent with a deficiency in their pyruvate utilization via pyruvate dehydrogenase, shifting towards pyruvate carboxylase pathway. These results demonstrate that IP3Rs are not essential for hiPSC identity and pluripotency but regulate mitochondrial metabolism. This set of knockout hiPSC is a valuable resource for investigating IP3Rs in human cell types of interest.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA