Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mutat ; 43(4): 529-536, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35077577

RESUMEN

Revertant mosaicism (RM) is a phenomenon in which inherited mutations are spontaneously corrected in somatic cells. RM occurs in some congenital skin diseases, but genetic validation of RM in clinically revertant skin has been challenging, especially when homologous recombination (HR) is responsible for RM. Here, we introduce nanopore Cas9-targeted sequencing (nCATS) for identifying HR in clinically revertant skin. We took advantage of compound heterozygous COL7A1 mutations in a patient with recessive dystrophic epidermolysis bullosa who showed revertant skin spots. Cas9-mediated enrichment of genomic DNA (gDNA) covering the two mutation sites (>8 kb) in COL7A1 and subsequent MinION sequencing successfully detected intragenic crossover in the epidermis of the clinically revertant skin. This method enables the discernment of haplotypes of up to a few tens of kilobases of gDNA. Moreover, it is devoid of polymerase chain reaction amplification, which can technically induce recombination. We, therefore, propose that nCATS is a powerful tool for understanding complicated gene modifications, including RM.


Asunto(s)
Epidermólisis Ampollosa Distrófica , Sistemas CRISPR-Cas , Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/diagnóstico , Epidermólisis Ampollosa Distrófica/genética , Humanos , Mosaicismo , Mutación , Piel
2.
Hum Mutat ; 43(7): 877-881, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35446444

RESUMEN

An autosomal recessive disease is caused by biallelic loss-of-function mutations. However, when more than two disease-causing variants are found in a patient's gene, it is challenging to determine which two of the variants are responsible for the disease phenotype. Here, to decipher the pathogenic variants by precise haplotyping, we applied nanopore Cas9-targeted sequencing (nCATS) to three truncation COL7A1 variants detected in a patient with recessive dystrophic epidermolysis bullosa (EB). The distance between the most 5' and 3' variants was approximately 19 kb at the level of genomic DNA. nCATS successfully demonstrated that the most 5' and 3' variants were located in one allele while the variant in between was located in the other allele. Interestingly, the proband's mother, who was phenotypically intact, was heterozygous for the allele that harbored the two truncation variants, which could otherwise be misinterpreted as those of typical recessive dystrophic EB. Our study highlights the usefulness of nCATS as a tool to determine haplotypes of complicated genetic cases. Haplotyping of multiple variants in a gene can determine which variant should be therapeutically targeted when nucleotide-specific gene therapy is applied.


Asunto(s)
Colágeno Tipo VII , Epidermólisis Ampollosa Distrófica , Sistemas CRISPR-Cas , Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/patología , Epidermólisis Ampollosa Distrófica/terapia , Genes Recesivos , Haplotipos , Humanos , Mutación
3.
Curr Microbiol ; 79(9): 265, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35859064

RESUMEN

The role of lymphocytes as a cornerstone of the inflammatory response in the invasive pathogenesis of Chlamydia trachomatis (Ct) LGV (L1-3) infection is unclear. Therefore, we assessed whether the adaptation of CtL2 to immortal lymphoid Jurkat cells under hypoxic conditions occurred through proinflammatory cytokine profile modification. The quantities of inclusion-forming units with chlamydial 16S rDNA confirmed that CtL2 grew well under hypoxic rather than normoxic conditions in the cells. Confocal microscopic imaging and transmission electron microscopy revealed the presence of bacterial progeny in the inclusions and showed that the inclusions were larger under hypoxic rather than normoxic conditions; this was supported by the results of 3D image construction. Furthermore, PCR-based analysis of proinflammatory cytokines revealed that the gene expression levels under hypoxic conditions were significantly higher than those under normoxic conditions. In particular, the expression of two genes (CXCL8 and CXCR3) was significantly diminished under normoxic conditions. Taken together, the results indicated that hypoxia promoted CtL2 growth in Jurkat cells while maintaining the levels of proinflammatory cytokines. Thus, Ct LGV infection in lymphocytes under hypoxic conditions might be crucial to a complete understanding of the invasive pathogenesis.


Asunto(s)
Infecciones por Chlamydia , Chlamydia trachomatis , Citocinas/metabolismo , Humanos , Hipoxia , Células Jurkat
4.
J Virol ; 94(12)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32269119

RESUMEN

IgA antibodies on mucosal surfaces are known to play an important role in protection from influenza A virus (IAV) infection and are believed to be more potent than IgG for cross-protective immunity against IAVs of multiple hemagglutinin (HA) subtypes. However, in general, neutralizing antibodies specific to HA are principally HA subtype specific. Here, we focus on nonneutralizing but broadly cross-reactive HA-specific IgA antibodies. Recombinant IgG, monomeric IgA (mIgA), and polymeric secretory IgA (pSIgA) antibodies were generated based on the sequence of a mouse anti-HA monoclonal antibody (MAb) 5A5 that had no neutralizing activity but showed broad binding capacity to multiple HA subtypes. While confirming that there was no neutralizing activity of the recombinant MAbs against IAV strains A/Puerto Rico/8/1934 (H1N1), A/Adachi/2/1957 (H2N2), A/Hong Kong/483/1997 (H5N1), A/shearwater/South Australia/1/1972 (H6N5), A/duck/England/1/1956 (H11N6), and A/duck/Alberta/60/1976 (H12N5), we found that pSIgA, but not mIgA and IgG, significantly reduced budding and release of most of the viruses from infected cells. Electron microscopy demonstrated that pSIgA deposited newly produced virus particles on the surfaces of infected cells, most likely due to tethering of virus particles. Furthermore, we found that pSIgA showed significantly higher activity to reduce plaque sizes of the viruses than IgG and mIgA. These results suggest that nonneutralizing pSIgA reactive to multiple HA subtypes may play a role in intersubtype cross-protective immunity against IAVs.IMPORTANCE Mucosal immunity represented by pSIgA plays important roles in protection from IAV infection. Furthermore, IAV HA-specific pSIgA antibodies are thought to contribute to cross-protective immunity against multiple IAV subtypes. However, the mechanisms by which pSIgA exerts such versatile antiviral activity are not fully understood. In this study, we generated broadly cross-reactive recombinant IgG and pSIgA having the same antigen-recognition site and compared their antiviral activities in vitro These recombinant antibodies did not show "classical" neutralizing activity, whereas pSIgA, but not IgG, significantly inhibited the production of progeny virus particles from infected cells. Plaque formation was also significantly reduced by pSIgA, but not IgG. These effects were seen in infection with IAVs of several different HA subtypes. Based on our findings, we propose an antibody-mediated host defense mechanism by which mucosal immunity may contribute to broad cross-protection from IAVs of multiple HA subtypes, including viruses with pandemic potential.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunoglobulina A/inmunología , Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , Protección Cruzada , Reacciones Cruzadas , Perros , Femenino , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/clasificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Inmunidad Mucosa , Inmunoglobulina A/genética , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H2N2 del Virus de la Influenza A/genética , Subtipo H2N2 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Pruebas de Neutralización , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Liberación del Virus
5.
Microbiol Immunol ; 65(3): 115-124, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33368645

RESUMEN

We previously isolated a symbiotic environmental amoeba, harboring an environmental chlamydia, Neochlamydia S13. Interestingly, this bacterium failed to survive outside of host cells and was immediately digested inside other amoebae, indicating bacterial distribution via cytokinesis. This may provide a model for understanding organelle development and chlamydial pathogenesis and evolution; therefore, we assessed our hypothesis of Neochlamydia S13 distribution via cytokinesis by comparative analysis with other environmental Chlamydiae (Protochlamydia R18 and Parachlamydia Bn9 ). Dual staining with 4',6-diamidino-2-phenylindole and phalloidin revealed that the progeny of Neochlamydia S13 and Protochlamydia R18 existed in both daughter cells with a contractile ring on the verge of separation. However, in contrast to other environmental Chlamydiae, little Neochlamydia S13 16S ribosomal DNA was amplified from the culture supernatant. Interestingly, Neochlamydia S13 failed to infect aposymbiotic amoebae, indicating an intimate interaction with the host cells. Furthermore, its infectious rates in cultures expanded from a single amoeba were always maintained at 100%, indicating distribution via cytokinesis. We concluded that unlike other environmental Chlamydiae, Neochlamydia S13 has a unique ability to divide its progeny only via host amoebal cytokinesis. This may be a suitable model to elucidate the mechanism of cell organelle distribution and of chlamydial pathogenesis and evolution.


Asunto(s)
Amoeba , Chlamydiales , Citocinesis , Amoeba/microbiología , ARN Ribosómico 16S/genética , Simbiosis
6.
Emerg Infect Dis ; 25(5): 883-890, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31002057

RESUMEN

Bacillus cereus is associated with foodborne illnesses characterized by vomiting and diarrhea. Although some B. cereus strains that cause severe extraintestinal infections and nosocomial infections are recognized as serious public health threats in healthcare settings, the genetic backgrounds of B. cereus strains causing such infections remain unknown. By conducting pulsed-field gel electrophoresis and multilocus sequence typing, we found that a novel sequence type (ST), newly registered as ST1420, was the dominant ST isolated from the cases of nosocomial infections that occurred in 3 locations in Japan in 2006, 2013, and 2016. Phylogenetic analysis showed that ST1420 strains belonged to the Cereus III lineage, which is much closer to the Anthracis lineage than to other Cereus lineages. Our results suggest that ST1420 is a prevalent ST in B. cereus strains that have caused recent nosocomial infections in Japan.


Asunto(s)
Bacillus cereus/clasificación , Bacillus cereus/genética , Bacteriemia , Infección Hospitalaria/microbiología , Infecciones por Bacterias Grampositivas/microbiología , Alelos , Infección Hospitalaria/epidemiología , ADN Bacteriano , Genes Bacterianos , Genotipo , Infecciones por Bacterias Grampositivas/epidemiología , Humanos , Japón/epidemiología , Tipificación Molecular , Filogenia
7.
Am J Pathol ; 184(3): 753-64, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24389166

RESUMEN

Intervertebral disk (IVD) degeneration causes debilitating low back pain in much of the worldwide population. No efficient treatment exists because of an unclear pathogenesis. One characteristic event early in such degeneration is the apoptosis of nucleus pulposus (NP) cells embedded in IVDs. Excessive biomechanical loading may also be a major etiology of IVD degeneration. The present study used in vitro and in vivo models of compressive loading to elucidate the underlying mechanism of IVD degeneration. In addition, we investigated whether the inhibition of apoptosis is a potential clinical therapeutic strategy for the treatment of IVD degeneration induced by biomechanical stress. A TUNEL assay showed that NP cell-agarose three-dimensional composite cultures subjected to uniaxial, unconfined, static, compressive loading exhibited a time-dependent increase in apoptosis. Western blot analysis revealed the up-regulation of several extracellular matrix-degrading enzymes and down-regulation of tissue inhibitor of metalloproteinase 1. These responses to compressive loading were all significantly inhibited by caspase 3 siRNA. In the in vivo model of compressive loading-induced IVD degeneration, a single local injection of caspase 3 siRNA significantly inhibited IVD degeneration by magnetic resonance imaging, histological findings, IHC, and TUNEL assay. The present study suggests that caspase 3 siRNA attenuates overload-induced IVD degeneration by inhibiting NP cell apoptosis and the expression of matrix-degrading enzymes.


Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Regulación Enzimológica de la Expresión Génica , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/fisiopatología , Animales , Fenómenos Biomecánicos , Caspasa 3/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Matriz Extracelular/metabolismo , Silenciador del Gen , Humanos , Disco Intervertebral/metabolismo , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/etiología , Degeneración del Disco Intervertebral/terapia , Masculino , Modelos Biológicos , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/metabolismo , Conejos , Transducción de Señal , Regulación hacia Arriba , Soporte de Peso
8.
Trop Anim Health Prod ; 47(2): 459-63, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25535151

RESUMEN

African swine fever (ASF) is a highly contagious and fatal hemorrhagic viral disease of domestic pigs. The disease is widespread in sub-Saharan Africa and has repeatedly been introduced into other continents. The current study describes the diagnostic investigations of a hemorrhagic disease that was reported in pigs in Lusaka (October 2013), Zambia. Necropsy, histopathology, and molecular diagnosis using polymerase chain reaction and sequence analysis confirmed the disease to be ASF. The sequences obtained showed high similarity to previously isolated ASF viruses. Consistent surveillance and rapid diagnosis of the disease is recommended to prevent future outbreaks and economic losses as there is currently no vaccine against the disease.


Asunto(s)
Virus de la Fiebre Porcina Africana/aislamiento & purificación , Fiebre Porcina Africana/epidemiología , Brotes de Enfermedades/veterinaria , Fiebre Porcina Africana/diagnóstico , Fiebre Porcina Africana/microbiología , Virus de la Fiebre Porcina Africana/genética , Animales , Femenino , Masculino , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , Embarazo , Porcinos , Zambia/epidemiología
9.
Antibiotics (Basel) ; 13(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38534694

RESUMEN

Poultry products in Zambia form an integral part of the human diet in many households, as they are cheap and easy to produce. The burden of poultry diseases has, however, remained a major challenge. Growing consumer demand for poultry products in Zambia has resulted in non-prudent antimicrobial use on farms, intending to prevent and treat poultry diseases for growth optimisation and maximising profits. This cross-sectional study aimed to identify the different types of bacteria causing diseases in chickens in Lusaka and to detect the extended-spectrum lactamase (ESBL)-encoding genes. We collected 215 samples from 91 diseased chickens at three post-mortem facilities and screened them for Gram-negative bacteria. Of these samples, 103 tested positive for various clinically relevant Enterobacteriaceae, including Enterobacter (43/103, 41.7%), Escherichia coli (20/103, 19.4%), Salmonella (10/103, 9.7%), and Shigella (8/103, 7.8%). Other isolated bacteria included Yersinia, Morganella, Proteus, and Klebsiella, which accounted for 21.4%. E. coli, Enterobacter, Salmonella, and Shigella were subjected to antimicrobial susceptibility testing. The results revealed that E. coli, Enterobacter, and Shigella were highly resistant to tetracycline, ampicillin, amoxicillin, and trimethoprim-sulfamethoxazole, while Salmonella showed complete susceptibility to all tested antibiotics. The observed resistance patterns correlated with antimicrobial usage estimated from sales data from a large-scale wholesale and retail company. Six (6/14, 42.9%) E. coli isolates tested positive for blaCTX-M, whilst eight (8/14, 57.1%) Enterobacter samples tested positive for blaTEM. Interestingly, four (4/6, 66.7%) of the E. coli isolates carrying blaCTX-M-positive strains were also positive for blaTEM. Sanger sequencing of the PCR products revealed that five (5/6, 83.3%) of the abovementioned isolates possessed the blaCTX-M-15 allele. The results suggest the presence of potentially pathogenic ESBL-producing Enterobacteriaceae in poultry, threatening public health.

10.
PLoS One ; 19(4): e0302053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625961

RESUMEN

Increased antimicrobial resistance (AMR) among bacteria underscores the need to strengthen AMR surveillance and promote data-based prescribing. To evaluate trends and associations between antimicrobial usage (AMU) and AMR, we explored a dataset of 34,672 bacterial isolates collected between 2015 and 2020 from clinical samples at the University Teaching Hospital (UTH) in Lusaka, Zambia. The most frequently isolated species were Escherichia coli (4,986/34,672; 14.4%), Staphylococcus aureus (3,941/34,672; 11.4%), and Klebsiella pneumoniae (3,796/34,672; 10.9%). Of the 16 drugs (eight classes) tested, only amikacin and imipenem showed good (> 50%) antimicrobial activity against both E. coli and K. pneumoniae, while nitrofurantoin was effective only in E. coli. Furthermore, 38.8% (1,934/4,980) of E. coli and 52.4% (2,079/3,791) of K. pneumoniae isolates displayed multidrug resistance (MDR) patterns on antimicrobial susceptibility tests. Among S. aureus isolates, 44.6% (973/2,181) were classified as methicillin-resistant (MRSA). Notably, all the MRSA exhibited MDR patterns. The annual hospital AMR rates varied over time, while there was a weak positive relationship (r = 0.38, 95% CI = 0.11-0.60) between the monthly use of third-generation cephalosporins (3GCs) and 3GC resistance among Enterobacterales. Overall, the results revealed high AMR rates that fluctuated over time, with a weak positive relationship between 3GC use and resistance. To our knowledge, this is the first report to evaluate the association between AMU and AMR in Zambia. Our results highlight the need to strengthen antimicrobial stewardship programs and optimize AMU in hospital settings.


Asunto(s)
Antibacterianos , Antiinfecciosos , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Escherichia coli , Zambia/epidemiología , Staphylococcus aureus , Farmacorresistencia Bacteriana , Antiinfecciosos/farmacología , Hospitales , Klebsiella pneumoniae , Derivación y Consulta , Pruebas de Sensibilidad Microbiana
11.
Antibiotics (Basel) ; 13(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786195

RESUMEN

Antimicrobial resistance (AMR) among Escherichia coli from food animals is a rising problem, and heavy antimicrobial use in poultry is a contributing factor. In Zambia, studies linking poultry-associated AMR and antibiotic use (AMU) are rare. This study aimed to investigate commercial and medium-/small-scale poultry farmers' usage of antimicrobials based on a questionnaire survey in ten districts of Zambia. In addition, the study characterized extended-spectrum ß-lactamase (ESBL)-producing E. coli isolates obtained from poultry in the same districts. Data regarding knowledge and usage of antimicrobials were collected from commercial and medium-/small-scale poultry farmers using a pre-tested structured questionnaire. At the same time, cloacal samples were collected and analyzed. One hundred and fifty E. coli isolates were tested for antimicrobial susceptibility using eight antibiotic classes. The isolates were further screened for ESBL production by streaking them on cefotaxime (CTX)-supplemented MacConkey agar, then subjecting them to sequencing on a NextSeq. The questionnaire survey showed that more medium-/small-scale than commercial poultry farmers used antimicrobials (OR = 7.70, 95% CI = 2.88-20.61) but less prescriptions (OR = 0.02, 95% CI = 0.00-0.08). Susceptibility testing revealed that resistance was highest to ampicillin (128/148, 86.5%) and tetracycline (101/136, 74.3%) and that the prevalence of multidrug resistance (MDR) (28/30, 93.3%) was high. Whole-genome sequencing (WGS) of eight (8/30, 26.7%) isolates with CTX Minimum Inhibitory Concentration (MIC) ≥ 4 µg/mL revealed the presence of ESBL-encoding genes blaCTX-M-14, blaCTX-M-55, and blaTEM. WGS also detected other AMR genes for quinolones, aminoglycosides, phenicols, tetracycline, macrolides, and folate-pathway antagonists. Altogether, the questionnaire survey results showed a higher proportion of AMU and lower prescription usage among medium-/small-scale farmers. In addition, our results emphasize the circulation of ESBL-producing E. coli strains with associated MDR. It is critical to educate farmers about AMR risks and to encourage responsible usage of antimicrobials. Furthermore, there is a need to strengthen regulations limiting access to antimicrobials. Finally, there is a need to establish a one health system to guide public health response.

12.
Nature ; 447(7142): 330-3, 2007 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-17507984

RESUMEN

Helicobacter pylori cagA-positive strains are associated with gastritis, ulcerations and gastric adenocarcinoma. CagA is delivered into gastric epithelial cells and, on tyrosine phosphorylation, specifically binds and activates the SHP2 oncoprotein, thereby inducing the formation of an elongated cell shape known as the 'hummingbird' phenotype. In polarized epithelial cells, CagA also disrupts the tight junction and causes loss of apical-basolateral polarity. We show here that H. pylori CagA specifically interacts with PAR1/MARK kinase, which has an essential role in epithelial cell polarity. Association of CagA inhibits PAR1 kinase activity and prevents atypical protein kinase C (aPKC)-mediated PAR1 phosphorylation, which dissociates PAR1 from the membrane, collectively causing junctional and polarity defects. Because of the multimeric nature of PAR1 (ref. 14), PAR1 also promotes CagA multimerization, which stabilizes the CagA-SHP2 interaction. Furthermore, induction of the hummingbird phenotype by CagA-activated SHP2 requires simultaneous inhibition of PAR1 kinase activity by CagA. Thus, the CagA-PAR1 interaction not only elicits the junctional and polarity defects but also promotes the morphogenetic activity of CagA. Our findings revealed that PAR1 is a key target of H. pylori CagA in the disorganization of gastric epithelial architecture underlying mucosal damage, inflammation and carcinogenesis.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Polaridad Celular , Células Epiteliales/citología , Células Epiteliales/enzimología , Helicobacter pylori , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Línea Celular , Células Epiteliales/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Cuaternaria de Proteína , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteínas Tirosina Fosfatasas/metabolismo , Uniones Estrechas/metabolismo
13.
Infect Prev Pract ; 5(2): 100272, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36910424

RESUMEN

Background: Outbreaks of Bacillus cereus bloodstream infections (BSIs) are a concern in Japanese medical settings. Aim: This study determined baseline values for B. cereus detection in clinical samples that are useful as reference values for hospitals when assessing the need for intervention. Method: A retrospective analysis of B. cereus detection in the Japan Nosocomial Infections Surveillance data from 2008 to 2014 was performed; it included 950 individual hospitals across the country. Findings: Bacillus spp. were detected in 0.54% of the clinical specimens submitted for bacteriological testing. Specimens positive for Bacillus spp. were mainly blood (24.6%), stool (26.5%), and respiratory specimens (23.3%). Identification of Bacillus spp. at the species level (i.e., B. cereus or B. subtilis) was reported in 55.3%, 14.7%, and 15.4% of cases, of which 88.9%, 48.3%, and 33.1% were B. cereus in blood, stool, and respiratory specimens, respectively. Of the 4105 hospital-years, 75.7% had blood specimens with Bacillus spp., with a median of 0.85 blood specimens/100 beds annually (interquartile range, 0.17-2.10). The B. cereus detection showed significant summer seasonality, regardless of specimen type or geographic distribution. The B. subtilis detection did not show seasonality, and its detection remained constant throughout the year. The seasonality of Bacillus spp. reflects the high proportion of B. cereus. Conclusions: The increased detection rate of Bacillus spp. during summer should be interpreted as a risk factor for B. cereus BSIs. A post-summer decrease in Bacillus spp. should not be interpreted as an effect of interventions.

14.
PLoS One ; 18(5): e0286255, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228098

RESUMEN

Betanin is a red pigment of red beetroot (Beta vulgaris L.), providing the beneficial effects to maintain human health. Betanin is involved in the characteristic red color of red beetroot, and used as an edible dye. Betanin is known to be a highly unstable pigment, and water solutions of betanin are nearly fully degraded after heating at 99°C for 60 min in the experimental conditions of this study. The present study investigated the effects of red beetroot juice (RBJ) and betanin on immune cells, and found that stimulation with RBJ and betanin induces interleukin (IL)-1ß, IL-8, and IL-10 mRNA in a human monocyte derived cell line, THP-1 cells. This mRNA induction after stimulation with RBJ and betanin was not significantly changed after heat treatment when attempting to induce degradation of the betanin. Following these results, the effects of heat degradation of betanin on the inhibition of lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW264 cells and the antioxidant capacity were investigated. The results showed that the inhibition activity of RBJ and betanin with the LPS induced NO production is not altered after heat degradation of betanin. In addition, the results of FRAP (ferric reducing antioxidant power) and DPPH (1,1-Diphenyl-2-picrylhydrazyl) assays indicate that a not inconsiderable degree of the antioxidant capacity of RBJ and betanin remained after heat degradation of betanin. These results suggest that it is important to consider the effects of degradation products of betanin in the evaluation of the beneficial effects of red beetroot on health.


Asunto(s)
Antioxidantes , Beta vulgaris , Humanos , Antioxidantes/farmacología , Calor , Lipopolisacáridos/farmacología , Betacianinas/farmacología , Óxido Nítrico
15.
PLoS One ; 18(4): e0284343, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37053208

RESUMEN

Chondroitin sulfate (CS) is a glycosaminoglycan, and CS derived from various animal species is used in drugs and food supplements to alleviate arthralgia. The CS is a high molecular weight compound, and hydrolysis of CS by intestinal microbiota is thought to be required for absorption in mammalians. Chondroitin sulfate oligosaccharides (Oligo-CS) are produced by hydrolysis with subcritical water from CS isolated from a species of skate, Raja pulchra for the improvement of bioavailability. The present study conducted in vitro experiments using murine cell lines, to compare the biological activities of Oligo-CS and high molecular weight CS composed with the similar disaccharide isomer units of D-glucuronic acid and N-acetyl-D-glucosamine (CS-C). The results show that Oligo-CS inhibits osteoclast differentiation of RAW264 cells significantly at lower concentrations than in CS. The cell viability of a myoblast cell line, C2C12 cells, was increased when the cells were grown in a differentiated medium for myotubes with Oligo-CS, where there were no effects on the cell viability in CS. These results suggest that in vitro Oligo-CS exhibits stronger bioactivity than high-molecular weight CS.


Asunto(s)
Sulfatos de Condroitina , Osteoclastos , Ratones , Animales , Sulfatos de Condroitina/farmacología , Sulfatos de Condroitina/metabolismo , Osteoclastos/metabolismo , Oligosacáridos/farmacología , Diferenciación Celular , Fibras Musculares Esqueléticas/metabolismo , Mamíferos/metabolismo
16.
Microbes Infect ; 25(5): 105097, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36608767

RESUMEN

Although IFN-γ depletes tryptophan (Trp) as a defense against intracellular Chlamydia trachomatis (Ct) infected to hypoxic vagina, the presence of indole, a precursor of Trp, enables Ct to infect IFN-γ-exposed culture cells. Meanwhile, Trp-derived indole derivatives interact the aryl hydrocarbon receptor (AhR), which is a ligand-dependent transcription factor involved in the cellular homeostasis with tubulin dynamics. Here, the amounts of IFN-γ and indole in cervical swabs with known Ct infection status were measured, and Ct growth in the presence of indole was determined from the perspective of the AhR axis under hypoxia. A positive correlation between the amounts of IFN-γ and indole was found, and both of these amounts were lower in Ct-positive swabs than in Ct-negative ones. Indole as well as other AhR ligands inhibited Ct growth, especially under normoxia. Ct prompted the expression of detyrosinated tubulin (dTTub), but indole inhibited it. Indole did not stimulate the translocation of AhR to nucleus, and it blocked AhR activation in AhR-reporter cells. Ct growth was reduced more effectively under normoxia in AhR-knockdown cells, an effect that was enhanced by indole, which in turn diminished dTTub. Thus, Ct growth relies on the scavenger role of cytosolic AhR responsible for promoting dTTub expression.


Asunto(s)
Chlamydia trachomatis , Receptores de Hidrocarburo de Aril , Femenino , Humanos , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Chlamydia trachomatis/metabolismo , Tubulina (Proteína) , Triptófano/metabolismo , Indoles/farmacología
17.
Front Cell Infect Microbiol ; 12: 902492, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719337

RESUMEN

Chlamydia trachomatis (Ct) is an intracellular energy-parasitic bacterium that requires ATP derived from infected cells for its growth. Meanwhile, depending on the O2 concentration, the host cells change their mode of ATP production between oxidative phosphorylation in mitochondria (Mt) and glycolysis; this change depends on signaling via reactive oxygen species (ROS) produced by NADPH oxidases (NOXs) as well as Mt. It has been proposed that Ct correspondingly switches its source of acquisition of ATP between host-cell Mt and glycolysis, but this has not been verified experimentally. In the present study, we assessed the roles of host-cell NOXs and Mt in the intracellular growth of CtL2 (L2 434/Bu) under normoxia (21% O2) and hypoxia (2% O2) by using several inhibitors of NOXs (or the downstream molecule) and Mt-dysfunctional (Mtd) HEp-2 cells. Under normoxia, diphenyleneiodonium, an inhibitor of ROS diffusion, abolished the growth of CtL2 and other Chlamydiae (CtD and C. pneumoniae). Both ML171 (a pan-NOX inhibitor) and GLX351322 (a NOX4-specific inhibitor) impaired the growth of CtL2 under normoxia, but not hypoxia. NOX4-knockdown cells diminished the bacterial growth. SB203580, an inhibitor of the NOX4-downstream molecule p38MAPK, also inhibited the growth of CtL2 under normoxia but not hypoxia. Furthermore, CtL2 failed to grow in Mtd cells under normoxia, but no effect was observed under hypoxia. We conclude that under normoxia, Ct requires functional Mt in its host cells as an ATP source, and that this process requires NOX4/p38MAPK signaling in the host cells. In contrast to hypoxia, crosstalk between NOX4 and Mt via p38MAPK may be crucial for the growth of Ct under normoxia.


Asunto(s)
Chlamydia trachomatis , NADPH Oxidasas , Adenosina Trifosfato , Humanos , Hipoxia , Mitocondrias , NADPH Oxidasa 4 , Especies Reactivas de Oxígeno
18.
Microbiol Resour Announc ; 11(4): e0120321, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35289651

RESUMEN

Bacillus cereus is mainly associated with foodborne illness but sometimes causes nosocomial infections. We previously reported that B. cereus strains of a specific sequence type, ST1420, were associated with nosocomial infection. Here, we determined the complete genome sequences of B. cereus strains isolated from nosocomial infection cases in Japanese hospitals.

19.
PLoS One ; 17(3): e0265225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35312710

RESUMEN

5-Methylcytosine is one of the major epigenetic marks of DNA in living organisms. Some bacterial species possess DNA methyltransferases that modify cytosines on both strands to produce fully-methylated sites or on either strand to produce hemi-methylated sites. In this study, we characterized a DNA methyltransferase that produces two sequences with different methylation patterns: one methylated on both strands and another on one strand. M.BatI is the orphan DNA methyltransferase of Bacillus anthracis coded in one of the prophages on the chromosome. Analysis of M.BatI modified DNA by bisulfite sequencing revealed that the enzyme methylates the first cytosine in sequences of 5'-GCAGC-3', 5'-GCTGC-3', and 5'-GCGGC-3', but not of 5'-GCCGC-3'. This resulted in the production of fully-methylated 5'-GCWGC-3' and hemi-methylated 5'-GCSGC-3'. M.BatI also showed toxicity when expressed in E. coli, which was caused by a mechanism other than DNA modification activity. Homologs of M.BatI were found in other Bacillus species on different prophage like regions, suggesting the spread of the gene by several different phages. The discovery of the DNA methyltransferase with unique modification target specificity suggested unrevealed diversity of target sequences of bacterial cytosine DNA methyltransferase.


Asunto(s)
Citosina , Metiltransferasas , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN Bacteriano/genética , Escherichia coli/metabolismo , Metiltransferasas/metabolismo
20.
FEMS Microbiol Lett ; 368(21-24)2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35030252

RESUMEN

Multidrug-resistant (MDR) Escherichia coli in food animals such as chickens is an emerging public health concern in Zambia. Additionally, the country's high demand for poultry products necessitates further investigation into the link between poultry and human MDR E. coli. Twenty cefotaxime-resistant E. coli isolates collected from poultry in Lusaka, Zambia, were screened for multidrug resistance and sequenced on MiSeq and MinION platforms. Genomes were assembled de novo and compared with 36 previously reported cefotaxime-resistant E. coli isolates from inpatients at the University Teaching Hospital, Lusaka. All (20/20, 100%) poultry isolates exhibited resistance to ampicillin, chloramphenicol and doxycycline. Phylogenetic analysis and hierarchical clustering showed a high degree of genetic relatedness between E. coli O17:H18-ST69 from poultry and humans. The E. coli O17:H18-ST69 clone accounted for 4/20 (20%) poultry- and 9/36 (25%) human-associated isolates that shared two plasmids harboring 14 antimicrobial resistance (AMR) genes. However, comparison analysis showed that the isolates also had other AMR plasmids distinct for each niche. Our results suggested clonal transmission of MDR E. coli between poultry and humans, with the potential acquisition of niche-specific AMR plasmids. Thus, the control of MDR E. coli requires a One Health approach involving both human and animal health sectors.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Animales , Antibacterianos/farmacología , Pollos , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Humanos , Pruebas de Sensibilidad Microbiana , Filogenia , Aves de Corral , Zambia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA