Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 184: 107785, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37085130

RESUMEN

Marmots (Marmota spp.) comprise a lineage of large-bodied ground squirrels that diversified rapidly in the Pleistocene, when the planet quickly transitioned to a drier, colder, and highly seasonal climate-particularly at high latitudes. Fossil evidence indicates the genus spread from North America, across Beringia, and into the European Alps over the course of only a few million years, beginning in the late Pliocene. Marmots are highly adapted to survive long and severely cold winters, and this likely favored their expansion and diversification over this time period. Previous phylogenetic studies have identified two major subgenera of marmots, but the timing of important speciation events and some species relationships have been difficult to resolve. Here we use ultraconserved elements and mitogenomes, with samples from all 15 extant species, to more precisely retrace how and when marmots came to inhabit a vast Holarctic range. Our results indicate marmots arose in North America in the Early Miocene (∼16.3 Ma) and dispersed across the Bering Land Bridge in the Pliocene (∼3-4 Ma); in addition, our fossil-calibrated timeline is suggestive of the rise and spread of open grasslands as being particularly important to marmot diversification. The woodchuck (M. monax) and the Alaska marmot (M. broweri) are found to be more closely related to the Eurasian species than to the other North American species. Paraphyly is evident in the bobak marmot (M. bobak) and the hoary marmot (M. caligata), and in the case of the latter the data are highly suggestive of a second, cryptic species in the Cascade Mountains of Washington.


Asunto(s)
Marmota , Sciuridae , Animales , Filogenia , Clima , Adaptación Fisiológica
2.
Mol Phylogenet Evol ; 126: 74-84, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29501374

RESUMEN

Madagascar is one of the world's foremost biodiversity hotspots, yet a large portion of its flora and fauna remains undescribed and the driving forces of in situ diversification are not well understood. Recent studies have identified a widespread, latitudinally structured phylogeographic pattern in Madagascar's humid-forest mammals, amphibians, reptiles, and insects. Several factors may be driving this pattern, namely biogeographic barriers (i.e., rivers or valleys) or past episodes of forest contraction and expansion. In this study, we describe the phylogeographic structure of the small, semifossorial mammal Oryzorictes hova, one of Madagascar's two species of mole tenrec, found throughout Madagascar's eastern humid forest belt, from high-elevation montane forest to low-elevation forests, as well as disturbed habitat such as rice fields. Using one mitochondrial locus, four nuclear loci, and 31 craniomandibular measurements, we identified three distinct populations of O. hova associated with the northern, central, and southern regions of the island. We found little evidence of gene flow among these populations, so we treated each population as a potential species. We validated species limits using two Bayesian methods: BP&P, employing only DNA sequence data, and iBPP using both DNA and morphological data, and we assessed whether these methods are susceptible to producing false positive errors. Molecular and morphological data support the recognition of each of the three populations of O. hova as distinct species, but formal species descriptions will require additional data from type specimens. This study illustrates the importance of using integrative datasets, multiple methodological approaches, and extensive geographic sampling for species delimitation and adds evidence for a widespread phylogeographic pattern in Madagascar's humid forest taxa.


Asunto(s)
Altitud , Especiación Genética , Mamíferos/genética , Animales , Teorema de Bayes , Biodiversidad , Genética de Población , Haplotipos/genética , Madagascar , Filogenia , Filogeografía , Análisis de Componente Principal , Especificidad de la Especie , Factores de Tiempo
3.
Biol Lett ; 6(2): 233-7, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-19906681

RESUMEN

In the four years since its original description, the taxonomy of the kipunji (Rungwecebus kipunji), a geographically restricted and critically endangered African monkey, has been the subject of much debate, and recent research suggesting that the first voucher specimen of Rungwecebus has baboon mitochondrial DNA has intensified the controversy. We show that Rungwecebus from a second region of Tanzania has a distinct mitochondrial haplotype that is basal to a clade containing all Papio species and the original Rungwecebus voucher, supporting the placement of Rungwecebus as the sister taxon of Papio and its status as a separate genus. We suggest that the Rungwecebus population in the Southern Highlands has experienced geographically localized mitochondrial DNA introgression from Papio, while the Ndundulu population retains the true Rungwecebus mitochondrial genome.


Asunto(s)
Cercopithecinae/genética , ADN Mitocondrial/genética , Demografía , Flujo Génico/genética , Genética de Población , Hibridación Genética , Filogenia , Animales , Secuencia de Bases , Teorema de Bayes , Cercopithecinae/clasificación , Biología Computacional , Haplotipos/genética , Modelos Genéticos , Datos de Secuencia Molecular , Papio/genética , Análisis de Secuencia de ADN , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA