Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 949, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39385072

RESUMEN

BACKGROUND: An invasion occurs when introduced species establish and maintain stable populations in areas outside of their native habitat. Adaptive evolution has been proposed to contribute to this process. The fall armyworm (Spodoptera frugiperda) is one of the major pest insects infesting maize in both invaded and native areas. The invasion of this species was reported from West Africa in 2016, followed by spreading across the Old World. We tested adaptive evolution to maize using 56 native samples from the USA and 59 invasive samples from Senegal, based on genomic and transcriptomic analyses. RESULTS: Principal component analysis revealed that the Senegalese population originated from corn strain. Three genetic loci were identified as targets of selective sweeps in the Senegalese population. These loci include four Cytochrome P450 genes (CYP321B1, CYP321B3, CYP321B4, and CYP337B5), as well as 12 genes of which the function is unclear. Transcriptomic analysis showed an overexpression of CYP321B1 and CYP321B3 genes in sfC samples compared to sfR samples. Additionally, these two genes were overexpressed when corn strain samples were exposed to maize. In larval feeding assays, the Senegalese population exhibited higher survival rates than a Floridan population across all four tested maize varieties. CONCLUSIONS: These results suggest that the analyzed Senegalese population experienced adaptive evolution involving loci containing CYP genes, potentially associated with an increase in the survival rates on maize. We argue that the invasive success of the fall armyworm is contributed by stabilizing selection to maize.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Especies Introducidas , Spodoptera , Zea mays , Zea mays/genética , Zea mays/parasitología , Animales , Sistema Enzimático del Citocromo P-450/genética , Spodoptera/genética , Evolución Molecular , Larva/genética , Adaptación Fisiológica/genética , Transcriptoma
2.
PLoS Pathog ; 16(10): e1008935, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33057453

RESUMEN

In a number of species, individuals exposed to pathogens can mount an immune response and transmit this immunological experience to their offspring, thereby protecting them against persistent threats. Such vertical transfer of immunity, named trans-generational immune priming (TGIP), has been described in both vertebrates and invertebrates. Although increasingly studied during the last decade, the mechanisms underlying TGIP in invertebrates are still elusive, especially those protecting the earliest offspring life stage, i.e. the embryo developing in the egg. In the present study, we combined different proteomic and transcriptomic approaches to determine whether mothers transfer a "signal" (such as fragments of infecting bacteria), mRNA and/or protein/peptide effectors to protect their eggs against two natural bacterial pathogens, namely the Gram-positive Bacillus thuringiensis and the Gram-negative Serratia entomophila. By taking the mealworm beetle Tenebrio molitor as a biological model, our results suggest that eggs are mainly protected by an active direct transfer of a restricted number of immune proteins and of antimicrobial peptides. In contrast, the present data do not support the involvement of mRNA transfer while the transmission of a "signal", if it happens, is marginal and only occurs within 24h after maternal exposure to bacteria. This work exemplifies how combining global approaches helps to disentangle the different scenarios of a complex trait, providing a comprehensive characterization of TGIP mechanisms in T. molitor. It also paves the way for future alike studies focusing on TGIP in a wide range of invertebrates and vertebrates to identify additional candidates that could be specific to TGIP and to investigate whether the TGIP mechanisms found herein are specific or common to all insect species.


Asunto(s)
Infecciones Bacterianas/inmunología , Larva/microbiología , Óvulo/inmunología , Serratia/patogenicidad , Tenebrio/microbiología , Animales , Bacillus thuringiensis/patogenicidad , Inmunidad/inmunología , Proteómica/métodos , Tenebrio/inmunología
3.
BMC Biol ; 18(1): 90, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32698880

RESUMEN

BACKGROUND: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. RESULTS: Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world. CONCLUSIONS: The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Genoma de los Insectos/fisiología , Hemípteros/genética , Adaptación Biológica/genética , Distribución Animal , Animales , Especies Introducidas , Vitis
5.
PLoS Biol ; 15(9): e2003769, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28892507

RESUMEN

Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than ß-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.


Asunto(s)
Blastocystis/genética , Genoma de Protozoos , Blastocystis/metabolismo , Metabolismo de los Hidratos de Carbono , Codón de Terminación , Microbioma Gastrointestinal , Humanos , Intrones , Especificidad de la Especie
6.
Mol Cell Probes ; 46: 101418, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31283967

RESUMEN

SATQPCR is a web tool providing statistical analysis of real-time quantitative PCR data including all MIQE rules (gene efficiency, selection of reference genes and normalization with them). Our application is a quick tool that provides to the biologist, graphs as well as statistical tables summarizing their results with the chosen methods (t-test or ANOVA with Tukey test). The application is available at http://satqpcr.sophia.inra.fr with a demo dataset. Source code can be found at https://framagit.org/. SUPPLEMENTARY INFORMATION: Tutorials at http://satqpcr.sophia.inra.fr/cgi/help.cgi.


Asunto(s)
Internet , Reacción en Cadena en Tiempo Real de la Polimerasa/estadística & datos numéricos , Programas Informáticos/estadística & datos numéricos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
7.
BMC Genomics ; 15: 704, 2014 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-25149648

RESUMEN

BACKGROUND: Spodoptera frugiperda (Noctuidae) is a major agricultural pest throughout the American continent. The highly polyphagous larvae are frequently devastating crops of importance such as corn, sorghum, cotton and grass. In addition, the Sf9 cell line, widely used in biochemistry for in vitro protein production, is derived from S. frugiperda tissues. Many research groups are using S. frugiperda as a model organism to investigate questions such as plant adaptation, pest behavior or resistance to pesticides. RESULTS: In this study, we constructed a reference transcriptome assembly (Sf_TR2012b) of RNA sequences obtained from more than 35 S. frugiperda developmental time-points and tissue samples. We assessed the quality of this reference transcriptome by annotating a ubiquitous gene family--ribosomal proteins--as well as gene families that have a more constrained spatio-temporal expression and are involved in development, immunity and olfaction. We also provide a time-course of expression that we used to characterize the transcriptional regulation of the gene families studied. CONCLUSION: We conclude that the Sf_TR2012b transcriptome is a valid reference transcriptome. While its reliability decreases for the detection and annotation of genes under strong transcriptional constraint we still recover a fair percentage of tissue-specific transcripts. That allowed us to explore the spatial and temporal expression of genes and to observe that some olfactory receptors are expressed in antennae and palps but also in other non related tissues such as fat bodies. Similarly, we observed an interesting interplay of gene families involved in immunity between fat bodies and antennae.


Asunto(s)
Perfilación de la Expresión Génica/normas , Spodoptera/genética , Transcriptoma , Animales , Genes de Insecto , Inmunidad Innata/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Anotación de Secuencia Molecular , Estándares de Referencia , Olfato/genética , Spodoptera/metabolismo
8.
Sci Rep ; 14(1): 7119, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531918

RESUMEN

The coffee leaf miner (Leucoptera coffeella) is one of the major pests of coffee crops in the neotropical regions, and causes major economic losses. Few molecular data are available to identify this pest and advances in the knowledge of the genome of L. coffeella will contribute to improving pest identification and also clarify taxonomy of this microlepidoptera. L. coffeella DNA was extracted and sequenced using PacBio HiFi technology. Here we report the complete L. coffeella circular mitochondrial genome (16,407 bp) assembled using Aladin software. We found a total of 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and an A + T rich-region and a D-loop. The L. coffeella mitochondrial gene organization is highly conserved with similarities to lepidopteran mitochondrial gene rearrangements (trnM-trnI-trnQ). We concatenated the 13 PCG to construct a phylogenetic tree and inferred the relationship between L. coffeella and other lepidopteran species. L. coffeella is found in the Lyonetiidae clade together with L. malifoliella and Lyonetia clerkella, both leaf miners. Interestingly, this clade is assigned in the Yponomeutoidea superfamily together with Gracillariidae, and both superfamilies displayed species with leaf-mining feeding habits.


Asunto(s)
Genoma Mitocondrial , Lepidópteros , Mariposas Nocturnas , Animales , Lepidópteros/genética , Filogenia , Mariposas Nocturnas/genética , Secuencia de Bases , Genes Mitocondriales , ARN de Transferencia/genética
9.
BMC Evol Biol ; 12: 64, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22577841

RESUMEN

BACKGROUND: The benzoxazinoids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA), are key defense compounds present in major agricultural crops such as maize and wheat. Their biosynthesis involves nine enzymes thought to form a linear pathway leading to the storage of DI(M)BOA as glucoside conjugates. Seven of the genes (Bx1-Bx6 and Bx8) form a cluster at the tip of the short arm of maize chromosome 4 that includes four P450 genes (Bx2-5) belonging to the same CYP71C subfamily. The origin of this cluster is unknown. RESULTS: We show that the pathway appeared following several duplications of the TSA gene (α-subunit of tryptophan synthase) and of a Bx2-like ancestral CYP71C gene and the recruitment of Bx8 before the radiation of Poaceae. The origins of Bx6 and Bx7 remain unclear. We demonstrate that the Bx2-like CYP71C ancestor was not committed to the benzoxazinoid pathway and that after duplications the Bx2-Bx5 genes were under positive selection on a few sites and underwent functional divergence, leading to the current specific biochemical properties of the enzymes. The absence of synteny between available Poaceae genomes involving the Bx gene regions is in contrast with the conserved synteny in the TSA gene region. CONCLUSIONS: These results demonstrate that rearrangements following duplications of an IGL/TSA gene and of a CYP71C gene probably resulted in the clustering of the new copies (Bx1 and Bx2) at the tip of a chromosome in an ancestor of grasses. Clustering favored cosegregation and tip chromosomal location favored gene rearrangements that allowed the further recruitment of genes to the pathway. These events, a founding event and elongation events, may have been the key to the subsequent evolution of the benzoxazinoid biosynthetic cluster.


Asunto(s)
Benzoxazinas/metabolismo , Vías Biosintéticas , Genes de Plantas , Poaceae/genética , Poaceae/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Filogenia , Poaceae/enzimología , Triptófano Sintasa/genética , Zea mays/genética
10.
Metabolites ; 12(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35736416

RESUMEN

Tomato plants are attacked by a variety of herbivore pests and among them, the leafminer Tuta absoluta, which is currently a major threat to global tomato production. Although the commercial tomato is susceptible to T. absoluta attacks, a better understanding of the defensive plant responses to this pest will help in defining plant resistance traits and broaden the range of agronomic levers that can be used for an effective integrated pest management strategy over the crop cycle. In this study, we developed an integrative approach combining untargeted metabolomic and transcriptomic analyses to characterize the local and systemic metabolic responses of young tomato plants to T. absoluta larvae herbivory. From metabolomic analyses, the tomato response appeared to be both local and systemic, with a local response in infested leaves being much more intense than in other parts of the plant. The main response was a massive accumulation of phenolamides with great structural diversity, including rare derivatives composed of spermine and dihydrocinnamic acids. The accumulation of this family of specialized metabolites was supported by transcriptomic data, which showed induction of both phenylpropanoid and polyamine precursor pathways. Moreover, our transcriptomic data identified two genes strongly induced by T. absoluta herbivory, that we functionally characterized as putrescine hydroxycinnamoyl transferases. They catalyze the biosynthesis of several phenolamides, among which is caffeoylputrescine. Overall, this study provided new mechanistic clues of the tomato/T. absoluta interaction.

11.
Sci Rep ; 12(1): 21063, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473923

RESUMEN

The fall armyworm (FAW; Spodoptera frugiperda) is one of the major agricultural pest insects. FAW is native to the Americas, and its invasion was first reported in West Africa in 2016. Then it quickly spread through Africa, Asia, and Oceania, becoming one of the main threats to corn production. We analyzed whole genome sequences of 177 FAW individuals from 12 locations on four continents to infer evolutionary processes of invasion. Principal component analysis from the TPI gene and whole genome sequences shows that invasive FAW populations originated from the corn strain. Ancestry coefficient and phylogenetic analyses from the nuclear genome indicate that invasive populations are derived from a single ancestry, distinct from native populations, while the mitochondrial phylogenetic tree supports the hypothesis of multiple introductions. Adaptive evolution specific to invasive populations was observed in detoxification, chemosensory, and digestion genes. We concluded that extant invasive FAW populations originated from the corn strain with potential contributions of adaptive evolution.


Asunto(s)
Spodoptera , Humanos , Animales , Spodoptera/genética , Filogenia , Asia , África , África Occidental
12.
Artículo en Inglés | MEDLINE | ID: mdl-34246923

RESUMEN

Phylloxera, Daktulosphaira vitifoliae, is an agronomic pest that feeds monophagously on grapevine, Vitis spp. host plants. Phylloxera manipulates primary and secondary plant metabolism to establish either leaf or root galls. We manually annotated 198 detoxification genes potentially involved in plant host manipulation, including cytochrome P450 (66 CYPs), carboxylesterase (20 CCEs), glutathione-S-transferase (10 GSTs), uridine diphosphate-glycosyltransferase (35 UGTs) and ABC transporter (67 ABCs) families. Transcriptomic expression patterns of these detoxification genes were analyzed for root and leaf galls. In addition to these transcriptomic analyses, we reanalyzed recent data from L1 and L2-3 stages feeding on tolerant and resistant rootstock. Data from two agricultural pest aphids, the generalist Myzus persicae and the Fabaceae specialist Acyrthosiphon pisum, and from the true bug vector of Chagas disease, Rhodnius prolixus, were used to perform phylogenetic analyses for each detoxification gene family. We found expansions of several gene sub-families in the genome of D. vitifoliae. Phylogenetically close genes were found to be organized in clusters in the same genomic position and orientation suggesting recent successive duplications. These results highlight the roles of the phylloxera detoxification gene repertoire in insect physiology and in adaptation to plant secondary metabolites, and provide gene candidates for further functional analyses.


Asunto(s)
Áfidos , Vitis , Adaptación Fisiológica , Animales , Áfidos/genética , Perfilación de la Expresión Génica , Humanos , Filogenia
13.
Insects ; 12(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208014

RESUMEN

The genus Spodoptera (Lepidoptera: Noctuidae) includes species that are among the most important crop pests in the world. These polyphagous species are able to feed on many plants, including corn, rice and cotton. In addition to their ability to adapt to toxic compounds produced by plants, they have developed resistance to the chemical insecticides used for their control. One of the main mechanisms developed by insects to become resistant involves detoxification enzymes. In this review, we illustrate some examples of the role of major families of detoxification enzymes such as cytochromes P450, carboxyl/cholinesterases, glutathione S-transferases (GST) and transporters such as ATP-binding cassette (ABC) transporters in insecticide resistance. We compare available data for four species, Spodoptera exigua, S. frugiperda, S. littoralis and S. litura. Molecular mechanisms underlying the involvement of these genes in resistance will be described, including the duplication of the CYP9A cluster, over-expression of GST epsilon or point mutations in acetylcholinesterase and ABCC2. This review is not intended to be exhaustive but to highlight the key roles of certain genes.

14.
Commun Biol ; 4(1): 104, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483589

RESUMEN

Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.


Asunto(s)
Evolución Biológica , Cromosomas de Insectos , Genoma de los Insectos , Polydnaviridae/genética , Avispas/genética , Animales , Secuencia de Bases , Secuencia Conservada , Nudiviridae/genética , Receptores Odorantes/genética , Olfato , Simbiosis , Sintenía , Avispas/virología
15.
Commun Biol ; 3(1): 664, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184418

RESUMEN

Understanding the genetic basis of insecticide resistance is a key topic in agricultural ecology. The adaptive evolution of multi-copy detoxification genes has been interpreted as a cause of insecticide resistance, yet the same pattern can also be generated by the adaptation to host-plant defense toxins. In this study, we tested in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), if adaptation by copy number variation caused insecticide resistance in two geographically distinct populations with different levels of resistance and the two host-plant strains. We observed a significant allelic differentiation of genomic copy number variations between the two geographic populations, but not between host-plant strains. A locus with positively selected copy number variation included a CYP gene cluster. Toxicological tests supported a central role for CYP enzymes in deltamethrin resistance. Our results indicate that copy number variation of detoxification genes might be responsible for insecticide resistance in fall armyworm and that evolutionary forces causing insecticide resistance could be independent of host-plant adaptation.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Spodoptera , Animales , Sistema Enzimático del Citocromo P-450/genética , Femenino , Genoma de los Insectos/genética , Nitrilos/farmacología , Piretrinas/farmacología , Spodoptera/efectos de los fármacos , Spodoptera/genética
16.
Biol Open ; 8(4)2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30926594

RESUMEN

Bacillus thuringiensis (Bt) produces pore forming toxins that have been used for pest control in agriculture for many years. However, their molecular and cellular mode of action is still unclear. While a first model - referred to as the pore forming model - is the most widely accepted scenario, a second model proposed that toxins could trigger an Mg2+-dependent intracellular signalling pathway leading to cell death. Although Cry1Ca has been shown to form ionic pores in the plasma membrane leading to cell swelling and death, we investigated the existence of other cellular or molecular events involved in Cry1Ca toxicity. The Sf9 insect cell line, derived from Spodoptera frugiperda, is highly and specifically sensitive to Cry1Ca. Through a selection program we developed various levels of laboratory-evolved Cry1Ca-resistant Sf9 cell lines. Using a specific S. frugiperda microarray we performed a comparative transcriptomic analysis between sensitive and resistant cells and revealed genes differentially expressed in resistant cells and related to cation-dependent signalling pathways. Ion chelators protected sensitive cells from Cry1Ca toxicity suggesting the necessity of both Ca2+ and/or Mg2+ for toxin action. Selected cells were highly resistant to Cry1Ca while toxin binding onto their plasma membrane was not affected. This suggested a resistance mechanism different from the classical 'loss of toxin binding'. We observed a correlation between Cry1Ca cytotoxicity and the increase of intracellular cAMP levels. Indeed, Sf9 sensitive cells produced high levels of cAMP upon toxin stimulation, while Sf9 resistant cells were unable to increase their intracellular cAMP. Together, these results provide new information about the mechanism of Cry1Ca toxicity and clues to potential resistance factors yet to discover.

17.
Pest Manag Sci ; 73(3): 493-499, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27787942

RESUMEN

The massive use of DDT as an insecticide between 1940 and 1970 has resulted in the emergence of a resistant population of insects. One of the main metabolic mechanisms developed by resistant insects involves detoxification enzymes such as cytochrome P450s. These enzymes can metabolise the insecticide to render it less toxic and facilitate its elimination from the organism. The P450 Cyp6g1 was identified as the major factor responsible for DDT resistance in Drosophila melanogaster field populations. In this article, we review the data available for this gene since it was associated with resistance in 2002. The knowledge gained on Cyp6g1 allows a better understanding of the evolution of insecticide resistance mechanisms and highlights the major role of transposable elements in evolutionary processes. © 2016 Society of Chemical Industry.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Evolución Molecular , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología
18.
Nat Ecol Evol ; 1(11): 1747-1756, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28963452

RESUMEN

The tobacco cutworm, Spodoptera litura, is among the most widespread and destructive agricultural pests, feeding on over 100 crops throughout tropical and subtropical Asia. By genome sequencing, physical mapping and transcriptome analysis, we found that the gene families encoding receptors for bitter or toxic substances and detoxification enzymes, such as cytochrome P450, carboxylesterase and glutathione-S-transferase, were massively expanded in this polyphagous species, enabling its extraordinary ability to detect and detoxify many plant secondary compounds. Larval exposure to insecticidal toxins induced expression of detoxification genes, and knockdown of representative genes using short interfering RNA (siRNA) reduced larval survival, consistent with their contribution to the insect's natural pesticide tolerance. A population genetics study indicated that this species expanded throughout southeast Asia by migrating along a South India-South China-Japan axis, adapting to wide-ranging ecological conditions with diverse host plants and insecticides, surviving and adapting with the aid of its expanded detoxification systems. The findings of this study will enable the development of new pest management strategies for the control of major agricultural pests such as S. litura.


Asunto(s)
Genoma de los Insectos , Herbivoria , Inactivación Metabólica , Insecticidas/metabolismo , Spodoptera/genética , Adaptación Biológica , Animales , Mapeo Cromosómico , Dieta , Perfilación de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Spodoptera/crecimiento & desarrollo , Spodoptera/fisiología , Secuenciación Completa del Genoma
19.
Sci Rep ; 7(1): 11816, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28947760

RESUMEN

Emergence of polyphagous herbivorous insects entails significant adaptation to recognize, detoxify and digest a variety of host-plants. Despite of its biological and practical importance - since insects eat 20% of crops - no exhaustive analysis of gene repertoires required for adaptations in generalist insect herbivores has previously been performed. The noctuid moth Spodoptera frugiperda ranks as one of the world's worst agricultural pests. This insect is polyphagous while the majority of other lepidopteran herbivores are specialist. It consists of two morphologically indistinguishable strains ("C" and "R") that have different host plant ranges. To describe the evolutionary mechanisms that both enable the emergence of polyphagous herbivory and lead to the shift in the host preference, we analyzed whole genome sequences from laboratory and natural populations of both strains. We observed huge expansions of genes associated with chemosensation and detoxification compared with specialist Lepidoptera. These expansions are largely due to tandem duplication, a possible adaptation mechanism enabling polyphagy. Individuals from natural C and R populations show significant genomic differentiation. We found signatures of positive selection in genes involved in chemoreception, detoxification and digestion, and copy number variation in the two latter gene families, suggesting an adaptive role for structural variation.


Asunto(s)
Adaptación Fisiológica/genética , Genoma de los Insectos , Herbivoria , Spodoptera/genética , Animales , Productos Agrícolas , Larva/genética , Especificidad de la Especie
20.
BMC Bioinformatics ; 7: 322, 2006 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-16796757

RESUMEN

BACKGROUND: The Lepidoptera Spodoptera frugiperda is a pest which causes widespread economic damage on a variety of crop plants. It is also well known through its famous Sf9 cell line which is used for numerous heterologous protein productions. Species of the Spodoptera genus are used as model for pesticide resistance and to study virus host interactions. A genomic approach is now a critical step for further new developments in biology and pathology of these insects, and the results of ESTs sequencing efforts need to be structured into databases providing an integrated set of tools and informations. DESCRIPTION: The ESTs from five independent cDNA libraries, prepared from three different S. frugiperda tissues (hemocytes, midgut and fat body) and from the Sf9 cell line, are deposited in the database. These tissues were chosen because of their importance in biological processes such as immune response, development and plant/insect interaction. So far, the SPODOBASE contains 29,325 ESTs, which are cleaned and clustered into non-redundant sets (2294 clusters and 6103 singletons). The SPODOBASE is constructed in such a way that other ESTs from S. frugiperda or other species may be added. User can retrieve information using text searches, pre-formatted queries, query assistant or blast searches. Annotation is provided against NCBI, UNIPROT or Bombyx mori ESTs databases, and with GO-Slim vocabulary. CONCLUSION: The SPODOBASE database provides integrated access to expressed sequence tags (EST) from the lepidopteran insect Spodoptera frugiperda. It is a publicly available structured database with insect pest sequences which will allow identification of a number of genes and comprehensive cloning of gene families of interest for scientific community. SPODOBASE is available from URL: http://bioweb.ensam.inra.fr/spodobase.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Spodoptera/genética , Animales , Análisis por Conglomerados , Mapeo Contig , ADN Complementario/metabolismo , Biblioteca de Genes , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN , Programas Informáticos , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA