Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(7): E677-86, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646466

RESUMEN

CCCTC-binding factor (CTCF) is a key regulator of nuclear chromatin structure and gene regulation. The impact of CTCF on transcriptional output is highly varied, ranging from repression to transcriptional pausing and transactivation. The multifunctional nature of CTCF may be directed solely through remodeling chromatin architecture. However, another hypothesis is that the multifunctional nature of CTCF is mediated, in part, through differential association with protein partners having unique functions. Consistent with this hypothesis, our mass spectrometry analyses of CTCF interacting partners reveal a previously undefined association with the transcription factor general transcription factor II-I (TFII-I). Biochemical fractionation of CTCF indicates that a distinct CTCF complex incorporating TFII-I is assembled on DNA. Unexpectedly, we found that the interaction between CTCF and TFII-I is essential for directing CTCF to the promoter proximal regulatory regions of target genes across the genome, particularly at genes involved in metabolism. At genes coregulated by CTCF and TFII-I, we find knockdown of TFII-I results in diminished CTCF binding, lack of cyclin-dependent kinase 8 (CDK8) recruitment, and an attenuation of RNA polymerase II phosphorylation at serine 5. Phenotypically, knockdown of TFII-I alters the cellular response to metabolic stress. Our data indicate that TFII-I directs CTCF binding to target genes, and in turn the two proteins cooperate to recruit CDK8 and enhance transcription initiation.


Asunto(s)
Epigénesis Genética , Genoma Humano , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Factores de Transcripción/fisiología , Factor de Unión a CCCTC , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Fosforilación
2.
J Biol Chem ; 291(49): 25476-25488, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27784786

RESUMEN

Nrf2 is a master transcription factor that regulates a wide variety of cellular proteins by recognizing and binding to antioxidant response elements (AREs) in their gene promoter regions. In this study we show that increasing cellular Nrf2 results in transcriptional activation of the gene for mTOR, which is central to the PI3K signaling pathway. This is the case in cells with normal physiological PI3K. However, in cells with abnormally active PI3K increased cellular Nrf2 levels have no effect on mTOR. ChIP assays results show that increased Nrf2 binding is associated with decreased p65 binding and H3-K27me3 signal (marker of gene repression) as well as increased H3-K4me3 signal (marker of gene activation). However, in cells with PI3K activation, no effect of cellular Nrf2 increase on mTOR transcription was observed. In these cells, increasing Nrf2 levels increases Nrf2 promoter binding marginally, whereas p65 binding and H3-K27me3 mark were significantly increased, and H3-K4me3 signal is reduced. Together, these data show for the first time that Nrf2 directly regulates mTOR transcription when the PI3K pathway is intact, whereas this function is lost when PI3K is activated. We have identified a link between the Nrf2 system of sensing environmental stress and mTOR, which is a key cellular protein in metabolism. Studies in cells with activating mutations in the PI3K pathway suggest that Nrf2 transcriptional regulation of mTOR is related to promoter binding of p65 and of methylation of histone residues permissive of transcription.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Factor 2 Relacionado con NF-E2/metabolismo , Regiones Promotoras Genéticas/fisiología , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción ReIA/metabolismo , Humanos , Células MCF-7 , Mutación , Factor 2 Relacionado con NF-E2/genética , Oxidación-Reducción , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/genética , Factor de Transcripción ReIA/genética
3.
Biochim Biophys Acta ; 1865(2): 275-88, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27085853

RESUMEN

Cancer constitutes a set of diseases with heterogeneous molecular pathologies. However, there are a number of universal aberrations common to all cancers, one of these being the epigenetic silencing of tumor suppressor genes (TSGs). The silencing of TSGs is thought to be an early, driving event in the oncogenic process. With this in consideration, great efforts have been made to develop small molecules aimed at the restoration of TSGs in order to limit tumor cell proliferation and survival. However, the molecular forces that drive the broad epigenetic reprogramming and transcriptional repression of these genes remain ill-defined. Undoubtedly, understanding the molecular underpinnings of transcriptionally silenced TSGs will aid us in our ability to reactivate these key anti-cancer targets. Here, we describe what we consider to be the five most logical molecular mechanisms that may account for this widely observed phenomenon: 1) ablation of transcription factor binding, 2) overexpression of DNA methyltransferases, 3) disruption of CTCF binding, 4) elevation of EZH2 activity, 5) aberrant expression of long non-coding RNAs. The strengths and weaknesses of each proposed mechanism is highlighted, followed by an overview of clinical efforts to target these processes.


Asunto(s)
Epigénesis Genética , Silenciador del Gen , Genes Supresores de Tumor , Animales , ADN (Citosina-5-)-Metiltransferasas/fisiología , Proteína Potenciadora del Homólogo Zeste 2 , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Complejo Represivo Polycomb 2/fisiología , ARN no Traducido/fisiología , Transcripción Genética , ADN Metiltransferasa 3B
4.
Mol Endocrinol ; 21(4): 797-816, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17299137

RESUMEN

The basis for the differential repressive effects of antiestrogens on transactivation by estrogen receptor-alpha (ERalpha) remains incompletely understood. Here, we show that the full antiestrogen ICI182,780 and, to a lesser extent, the selective ER modulator raloxifene (Ral), induce accumulation of exogenous ERalpha in a poorly soluble fraction in transiently transfected HepG2 or stably transfected MDA-MB231 cells and of endogenous receptor in MCF7 cells. ERalpha remained nuclear in HepG2 cells treated with either compound. Replacement of selected hydrophobic residues of ERalpha ligand-binding domain helix 12 (H12) enhanced receptor solubility in the presence of ICI182,780 or Ral. These mutations also increased transcriptional activity with Ral or ICI182,780 on reporter genes or on the endogenous estrogen target gene TFF1 in a manner requiring the integrity of the N-terminal AF-1 domain. The antiestrogen-specific effects of single mutations suggest that they affect receptor function by mechanisms other than a simple decrease in hydrophobicity of H12, possibly due to relief from local steric hindrance between these residues and the antiestrogen side chains. Fluorescence anisotropy experiments indicated an enhanced regional stabilization of mutant ligand-binding domains in the presence of antiestrogens. H12 mutations also prevent the increase in bioluminescence resonance energy transfer between ERalpha monomers induced by Ral or ICI182,780 and increase intranuclear receptor mobility in correlation with transcriptional activity in the presence of these antiestrogens. Our data indicate that ICI182,780 and Ral locally alter the ERalpha ligand binding structure via specific hydrophobic residues of H12 and decrease its transcriptional activity through tighter association with an insoluble nuclear structure.


Asunto(s)
Núcleo Celular/metabolismo , Estradiol/análogos & derivados , Antagonistas de Estrógenos/farmacología , Receptor alfa de Estrógeno/efectos de los fármacos , Leucina/metabolismo , Clorhidrato de Raloxifeno/farmacología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Núcleo Celular/química , Estradiol/farmacología , Receptor alfa de Estrógeno/análisis , Receptor alfa de Estrógeno/metabolismo , Fulvestrant , Humanos , Leucina/química , Leucina/genética , Datos de Secuencia Molecular , Mutación , Estructura Secundaria de Proteína , Solubilidad , Transcripción Genética/efectos de los fármacos , Factor Trefoil-1 , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/genética
5.
Sci Adv ; 3(5): e1601898, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28560323

RESUMEN

The repair of DNA double-strand breaks (DSBs) is mediated via two major pathways, nonhomologous end joining (NHEJ) and homologous recombination (HR) repair. DSB repair is vital for cell survival, genome stability, and tumor suppression. In contrast to NHEJ, HR relies on extensive homology and templated DNA synthesis to restore the sequence surrounding the break site. We report a new role for the multifunctional protein CCCTC-binding factor (CTCF) in facilitating HR-mediated DSB repair. CTCF is recruited to DSB through its zinc finger domain independently of poly(ADP-ribose) polymers, known as PARylation, catalyzed by poly(ADP-ribose) polymerase 1 (PARP-1). CTCF ensures proper DSB repair kinetics in response to γ-irradiation, and the loss of CTCF compromises HR-mediated repair. Consistent with its role in HR, loss of CTCF results in hypersensitivity to DNA damage, inducing agents and inhibitors of PARP. Mechanistically, CTCF acts downstream of BRCA1 in the HR pathway and associates with BRCA2 in a PARylation-dependent manner, enhancing BRCA2 recruitment to DSB. In contrast, CTCF does not influence the recruitment of the NHEJ protein 53BP1 or LIGIV to DSB. Together, our findings establish for the first time that CTCF is an important regulator of the HR pathway.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Rayos gamma , Reparación del ADN por Recombinación/efectos de la radiación , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Factor de Unión a CCCTC/genética , Línea Celular Tumoral , Células HEK293 , Humanos , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
6.
Mol Cell Biol ; 32(19): 3823-37, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22826433

RESUMEN

The selective estrogen receptor downregulator (SERD) fulvestrant can be used as second-line treatment for patients relapsing after treatment with tamoxifen, a selective estrogen receptor modulator (SERM). Unlike tamoxifen, SERDs are devoid of partial agonist activity. While the full antiestrogenicity of SERDs may result in part from their capacity to downregulate levels of estrogen receptor alpha (ERα) through proteasome-mediated degradation, SERDs are also fully antiestrogenic in the absence of increased receptor turnover in HepG2 cells. Here we report that SERDs induce the rapid and strong SUMOylation of ERα in ERα-positive and -negative cell lines, including HepG2 cells. Four sites of SUMOylation were identified by mass spectrometry analysis. In derivatives of the SERD ICI164,384, SUMOylation was dependent on the length of the side chain and correlated with full antiestrogenicity. Preventing SUMOylation by the overexpression of a SUMO-specific protease (SENP) deSUMOylase partially derepressed transcription in the presence of full antiestrogens in HepG2 cells without a corresponding increase in activity in the presence of agonists or of the SERM tamoxifen. Mutations increasing transcriptional activity in the presence of full antiestrogens reduced SUMOylation levels and suppressed stimulation by SENP1. Our results indicate that ERα SUMOylation contributes to full antiestrogenicity in the absence of accelerated receptor turnover.


Asunto(s)
Estradiol/análogos & derivados , Antagonistas de Estrógenos/farmacología , Receptor alfa de Estrógeno/metabolismo , Sumoilación/efectos de los fármacos , Línea Celular Tumoral , Estradiol/química , Estradiol/farmacología , Antagonistas de Estrógenos/química , Receptor alfa de Estrógeno/química , Receptor alfa de Estrógeno/genética , Fulvestrant , Células HEK293 , Células Hep G2 , Humanos , Simulación del Acoplamiento Molecular , Mutación Puntual , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA