Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Chem ; 65(19): 13125-13142, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36111399

RESUMEN

Tuberculosis and parasitic infections continue to impose a significant threat to global public health and economic growth. There is an urgent need to develop new treatments to combat these diseases. Here, we report the in vitro and in vivo profiles of a new bicyclic nitroimidazole subclass, namely, nitroimidazopyrazinones, against mycobacteria and Trypanosoma cruzi. Derivatives with monocyclic side chains were selective against Mycobacterium tuberculosis and were able to reduce the bacterial load when dosed orally in mice. We demonstrated that deazaflavin-dependent nitroreductase (Ddn) could act effectively on nitroimidazopyrazinones, indicating the potential of Ddn as an activating enzyme for these new compounds in M. tuberculosis. Oral administration of compounds with extended biaryl side chains (73 and 74) was effective in suppressing infection in an acute T. cruzi-infected murine model. These findings demonstrate that active nitroimidazopyrazinones have potential to be developed as orally available clinical candidates against both tuberculosis and Chagas disease.


Asunto(s)
Enfermedad de Chagas , Mycobacterium tuberculosis , Nitroimidazoles , Trypanosoma cruzi , Tuberculosis , Animales , Enfermedad de Chagas/tratamiento farmacológico , Modelos Animales de Enfermedad , Ratones , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Nitrorreductasas , Tuberculosis/tratamiento farmacológico
2.
Nat Commun ; 13(1): 260, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017494

RESUMEN

Advances in peptide and protein therapeutics increased the need for rapid and cost-effective polypeptide prototyping. While in vitro translation systems are well suited for fast and multiplexed polypeptide prototyping, they suffer from misfolding, aggregation and disulfide-bond scrambling of the translated products. Here we propose that efficient folding of in vitro produced disulfide-rich peptides and proteins can be achieved if performed in an aggregation-free and thermodynamically controlled folding environment. To this end, we modify an E. coli-based in vitro translation system to allow co-translational capture of translated products by affinity matrix. This process reduces protein aggregation and enables productive oxidative folding and recycling of misfolded states under thermodynamic control. In this study we show that the developed approach is likely to be generally applicable for prototyping of a wide variety of disulfide-constrained peptides, macrocyclic peptides with non-native bonds and antibody fragments in amounts sufficient for interaction analysis and biological activity assessment.


Asunto(s)
Sistema Libre de Células/efectos de los fármacos , Medicamentos Genéricos/química , Medicamentos Genéricos/farmacología , Péptidos/química , Péptidos/farmacología , Animales , Anticuerpos , Análisis Costo-Beneficio , Interpretación Estadística de Datos , Disulfuros , Drosophila melanogaster , Escherichia coli , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Leishmania , Péptidos/genética , Agregado de Proteínas , Dominios Proteicos , ARN Ribosómico 16S , Biología Sintética , Termodinámica
3.
Commun Biol ; 4(1): 7, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469147

RESUMEN

Antimicrobial resistance threatens the viability of modern medicine, which is largely dependent on the successful prevention and treatment of bacterial infections. Unfortunately, there are few new therapeutics in the clinical pipeline, particularly for Gram-negative bacteria. We now present a detailed evaluation of the antimicrobial activity of cannabidiol, the main non-psychoactive component of cannabis. We confirm previous reports of Gram-positive activity and expand the breadth of pathogens tested, including highly resistant Staphylococcus aureus, Streptococcus pneumoniae, and Clostridioides difficile. Our results demonstrate that cannabidiol has excellent activity against biofilms, little propensity to induce resistance, and topical in vivo efficacy. Multiple mode-of-action studies point to membrane disruption as cannabidiol's primary mechanism. More importantly, we now report for the first time that cannabidiol can selectively kill a subset of Gram-negative bacteria that includes the 'urgent threat' pathogen Neisseria gonorrhoeae. Structure-activity relationship studies demonstrate the potential to advance cannabidiol analogs as a much-needed new class of antibiotics.


Asunto(s)
Antibacterianos/farmacología , Cannabidiol/análogos & derivados , Cannabidiol/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Animales , Antibacterianos/química , Cannabidiol/química , Cannabidiol/toxicidad , Clostridioides difficile/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Femenino , Células HEK293 , Hemólisis/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones Endogámicos , Pruebas de Sensibilidad Microbiana , Neisseria gonorrhoeae/efectos de los fármacos , Enfermedades Cutáneas Bacterianas/tratamiento farmacológico , Enfermedades Cutáneas Bacterianas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA