RESUMEN
Echolocating bats are among the most social and vocal of all mammals. These animals are ideal subjects for functional MRI (fMRI) studies of auditory social communication given their relatively hypertrophic limbic and auditory neural structures and their reduced ability to hear MRI gradient noise. Yet, no resting-state networks relevant to social cognition (e.g., default mode-like networks or DMLNs) have been identified in bats since there are few, if any, fMRI studies in the chiropteran order. Here, we acquired fMRI data at 7 Tesla from nine lightly anesthetized pale spear-nosed bats (Phyllostomus discolor). We applied independent components analysis (ICA) to reveal resting-state networks and measured neural activity elicited by noise ripples (on: 10 ms; off: 10 ms) that span this species' ultrasonic hearing range (20 to 130 kHz). Resting-state networks pervaded auditory, parietal, and occipital cortices, along with the hippocampus, cerebellum, basal ganglia, and auditory brainstem. Two midline networks formed an apparent DMLN. Additionally, we found four predominantly auditory/parietal cortical networks, of which two were left-lateralized and two right-lateralized. Regions within four auditory/parietal cortical networks are known to respond to social calls. Along with the auditory brainstem, regions within these four cortical networks responded to ultrasonic noise ripples. Iterative analyses revealed consistent, significant functional connectivity between the left, but not right, auditory/parietal cortical networks and DMLN nodes, especially the anterior-most cingulate cortex. Thus, a resting-state network implicated in social cognition displays more distributed functional connectivity across left, relative to right, hemispheric cortical substrates of audition and communication in this highly social and vocal species.
Asunto(s)
Corteza Auditiva , Quirópteros , Ecolocación , Imagen por Resonancia Magnética , Animales , Quirópteros/fisiología , Corteza Auditiva/fisiología , Corteza Auditiva/diagnóstico por imagen , Ecolocación/fisiología , Red en Modo Predeterminado/fisiología , Red en Modo Predeterminado/diagnóstico por imagen , Masculino , Femenino , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagenRESUMEN
How do intrinsic brain dynamics interact with processing of external sensory stimuli? We sought new insights using functional magnetic resonance imaging to track spatiotemporal activity patterns at the whole brain level in lightly anesthetized mice, during both resting conditions and visual stimulation trials. Our results provide evidence that quasiperiodic patterns (QPPs) are the most prominent component of mouse resting brain dynamics. These QPPs captured the temporal alignment of anticorrelation between the default mode (DMN)- and task-positive (TPN)-like networks, with global brain fluctuations, and activity in neuromodulatory nuclei of the reticular formation. Specifically, the phase of QPPs prior to stimulation could significantly stratify subsequent visual response magnitude, suggesting QPPs relate to brain state fluctuations. This is the first observation in mice that dynamics of the DMN- and TPN-like networks, and particularly their anticorrelation, capture a brain state dynamic that affects sensory processing. Interestingly, QPPs also displayed transient onset response properties during visual stimulation, which covaried with deactivations in the reticular formation. We conclude that QPPs appear to capture a brain state fluctuation that may be orchestrated through neuromodulation. Our findings provide new frontiers to understand the neural processes that shape functional brain states and modulate sensory input processing.
Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Red en Modo Predeterminado/fisiología , Animales , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Estimulación Luminosa , Descanso/fisiologíaRESUMEN
The anterior cingulate area (ACC) is an integral part of the prefrontal cortex in mice and supports cognitive functions, including attentional processes, motion planning and execution as well as remote memory, fear and pain. Previous anatomical and functional imaging studies demonstrated that the ACC is interconnected with numerous brain regions, such as motor and sensory cortices, amygdala and limbic areas, suggesting it serves as a hub in functional networks. However, the exact role of the ACC in regulating functional network activity and connectivity remains to be elucidated. Recently developed neuromodulatory techniques, such as Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) allow for precise control of neuronal activity. In this study, we used an inhibitory kappa-opioid receptor DREADD (KORD) to temporally inhibit neuronal firing in the right ACC of mice and assessed functional network activity and connectivity using non-invasive functional magnetic resonance imaging (MRI). We demonstrated that KORD-induced inhibition of the right ACC induced blood oxygenation-level dependent (BOLD) signal decreases and increases in connected brain regions of both hemispheres. More specifically, altered neuronal activity could be observed in functional brain networks including connections with sensory cortex, thalamus, basolateral amygdala and ventral pallidum, areas involved in attention processes, working memory, fear behavior and reward respectively. Furthermore, these modulations in neuronal activity were associated with decreased intra- and interhemispheric functional connectivity. Our results consolidate the hub role of the mouse ACC in functional networks and further demonstrate that the combination of the DREADD technology and non-invasive functional imaging methods is a valuable tool for unraveling mechanisms of network function and dysfunction by reversible inactivation of selected targets.
Asunto(s)
Red en Modo Predeterminado/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Inhibición Neural/efectos de los fármacos , Receptores Opioides kappa , Animales , Mapeo Encefálico , Red en Modo Predeterminado/efectos de los fármacos , Giro del Cíngulo/efectos de los fármacos , Imagen por Resonancia Magnética , Ratones , Neuronas/efectos de los fármacosRESUMEN
The default mode network is a large-scale brain network that is active during rest and internally focused states and deactivates as well as desynchronizes during externally oriented (top-down) attention demanding cognitive tasks. However, it is not sufficiently understood if salient stimuli, able to trigger bottom-up attentional processes, could also result in similar reduction of activity and functional connectivity in the DMN. In this study, we investigated whether bottom-up sensory processing could influence the default mode-like network (DMLN) in rats. DMLN activity was examined using block-design visual functional magnetic resonance imaging (fMRI) while its synchronization was investigated by comparing functional connectivity during a resting versus a continuously stimulated brain state by unpredicted light flashes. We demonstrated that the BOLD response in DMLN regions was decreased during visual stimulus blocks and increased during blanks. Furthermore, decreased inter-network functional connectivity between the DMLN and visual networks as well as decreased intra-network functional connectivity within the DMLN was observed during the continuous visual stimulation. These results suggest that triggering of bottom-up attention mechanisms in sedated rats can lead to a cascade similar to top-down orienting of attention in humans and is able to deactivate and desynchronize the DMLN.
Asunto(s)
Atención/fisiología , Encéfalo/fisiología , Percepción Visual/fisiología , Animales , Mapeo Encefálico , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Estimulación Luminosa , Ratas Long-EvansRESUMEN
The discovery of the default mode network (DMN), a large-scale brain network that is suppressed during attention-demanding tasks, had major impact in neuroscience. This network exhibits an antagonistic relationship with attention-related networks. A better understanding of the processes underlying modulation of DMN is imperative, as this network is compromised in several neurological diseases. Cholinergic neuromodulation is one of the major regulatory networks for attention, and studies suggest a role in regulation of the DMN. In this study, we unilaterally activated the right basal forebrain cholinergic neurons and observed decreased right intra-hemispheric and interhemispheric FC in the default mode like network (DMLN). Our findings provide critical insights into the interplay between cholinergic neuromodulation and DMLN, demonstrate that differential effects can be exerted between the two hemispheres by unilateral stimulation, and open windows for further studies involving directed modulations of DMN in treatments for diseases demonstrating compromised DMN activity.
RESUMEN
A large proportion of the population suffers from endocrine disruption, e.g., menopausal women, which might result in accelerated aging and a higher risk for developing cognitive disorders. Therefore, it is crucial to fully understand the impact of such disruptions on the brain to identify potential therapeutic strategies. Here, we show using resting-state functional magnetic resonance imaging that ovariectomy and consequent hypothalamus-pituitary-gonadal disruption result in the selective dysconnectivity of 2 discrete brain regions in mice. This effect coincided with cognitive deficits and an underlying pathological molecular phenotype involving an imbalance of neurodevelopmental/neurodegenerative signaling. Furthermore, this quantitative mass spectrometry proteomics-based analysis of molecular signaling patterns further identified a strong involvement of altered dopaminergic functionality (e.g., DAT and predicted upstream regulators DRD3, NR4A2), reproductive signaling (e.g., Srd5a2), rotatin expression (rttn), cellular aging (e.g., Rxfp3, Git2), myelination, and axogenesis (e.g., Nefl, Mag). With this, we have provided an improved understanding of the impact of hypothalamus-pituitary-gonadal dysfunction and highlighted the potential of using a highly translational magnetic resonance imaging technique for monitoring these effects on the brain.
Asunto(s)
Encéfalo/patología , Encéfalo/fisiopatología , Disfunción Cognitiva/etiología , Ovariectomía/efectos adversos , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Proteínas de Ciclo Celular , Senescencia Celular/genética , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Femenino , Expresión Génica , Sistema Hipotálamo-Hipofisario , Imagen por Resonancia Magnética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Sistema Hipófiso-Suprarrenal , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismoRESUMEN
Brain atlases play a key role in modern neuroimaging analysis of brain structure and function. We review available atlas databases for humans and animals and illustrate common state-of-the-art workflows in neuroimaging research based on image registration. Advances in noninvasive imaging methods, 3D ex vivo microscopy, and image processing are summarized which will eventually close the current resolution gap between brain atlases based on conventional 2D histology and those based on 3D in vivo imaging.
Asunto(s)
Anatomía Artística , Atlas como Asunto , Investigación Biomédica , Encéfalo/diagnóstico por imagen , Neuroimagen , Animales , Encéfalo/irrigación sanguínea , Humanos , Neovascularización FisiológicaRESUMEN
PURPOSE: Quantification in positron emission tomography (PET) imaging of an orthotopic mouse model of colorectal cancer (CRC) is challenging due to difficult tumor delineation. We aimed to establish a reproducible delineation approach, evaluate its feasibility for reliable PET quantification and compare its added translational value with its subcutaneous counterpart. PROCEDURES: A subcutaneous Colo205-luc2 tumor fragment harvested from a donor mouse was transplanted onto the caecum of nude mice, with (n = 10) or without (n = 10) the addition of an X-ray detectable thread. Animals underwent 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET imaging, complemented with X-ray computed tomography (CT) and magnetic resonance imaging (MRI, 7T). Animals without a thread underwent additional contrast enhanced (Exitron) CT imaging. Tumors were delineated on the MRI, µPET image or contrast enhanced µCT images and correlations between in vivo and ex vivo [18F]FDG tumor uptake as well as between image-derived and caliper-measured tumor volume were evaluated. Finally, cancer hallmarks were assessed immunohistochemically for the characterization of both models. RESULTS: Our results showed the strongest correlation between both in vivo and ex vivo uptake (r = 0.84, p < 0.0001) and image-derived and caliper-measured tumor volume (r = 0.96, p < 0.0001) when the tumor was delineated on the MR image. Orthotopic tumors displayed an abundance of stroma, higher levels of proliferation (p = 0.0007), apoptosis (p = 0.02), and necrosis (p < 0.0001), a higher number of blood vessels (p < 0.0001); yet lower tumor hypoxia (p < 0.0001) as compared with subcutaneous tumors. CONCLUSIONS: This orthotopic mouse model proved to be a promising tool for the investigation of CRC through preclinical imaging studies provided the availability of anatomical MR images for accurate tumor delineation. Furthermore, the tumor microenvironment of the orthotopic tumor resembled more that of human CRC, increasing its likelihood to advance translational nuclear imaging studies of CRC.