RESUMEN
BACKGROUND: The autoimmune lymphoproliferative syndrome (ALPS) is a noninfectious and nonmalignant lymphoproliferative disease frequently associated with autoimmune cytopenia resulting from defective FAS signaling. We previously described germline monoallelic FAS (TNFRSF6) haploinsufficient mutations associated with somatic events, such as loss of heterozygosity on the second allele of FAS, as a cause of ALPS-FAS. These somatic events were identified by sequencing FAS in DNA from double-negative (DN) T cells, the pathognomonic T-cell subset in ALPS, in which the somatic events accumulated. OBJECTIVE: We sought to identify whether a somatic event affecting the FAS-associated death domain (FADD) gene could be related to the disease onset in 4 unrelated patients with ALPS carrying a germline monoallelic mutation of the FADD protein inherited from a healthy parent. METHODS: We sequenced FADD and performed array-based comparative genomic hybridization using DNA from sorted CD4+ or DN T cells. RESULTS: We found homozygous FADD mutations in the DN T cells from all 4 patients, which resulted from uniparental disomy. FADD deficiency caused by germline heterozygous FADD mutations associated with a somatic loss of heterozygosity was a phenocopy of ALPS-FAS without the more complex symptoms reported in patients with germline biallelic FADD mutations. CONCLUSIONS: The association of germline and somatic events affecting the FADD gene is a new genetic cause of ALPS.
Asunto(s)
Síndrome Linfoproliferativo Autoinmune , Proteína de Dominio de Muerte Asociada a Fas , Humanos , Apoptosis/genética , Enfermedades Autoinmunes/genética , Síndrome Linfoproliferativo Autoinmune/genética , Hibridación Genómica Comparativa , ADN , Receptor fas/genética , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Células Germinativas/patología , MutaciónRESUMEN
BACKGROUND: Elevated TCRαß+CD4-CD8- double-negative T cells (DNT) and serum biomarkers help identify FAS mutant patients with autoimmune lymphoproliferative syndrome (ALPS). However, in some patients with clinical features and biomarkers consistent with ALPS, germline or somatic FAS mutations cannot be identified on standard exon sequencing (ALPS-undetermined: ALPS-U). OBJECTIVE: We sought to explore whether complex genetic alterations in the FAS gene escaping standard sequencing or mutations in other FAS pathway-related genes could explain these cases. METHODS: Genetic analysis included whole FAS gene sequencing, copy number variation analysis, and sequencing of FAS cDNA and other FAS pathway-related genes. It was guided by FAS expression analysis on CD57+DNT, which can predict somatic loss of heterozygosity (sLOH). RESULTS: Nine of 16 patients with ALPS-U lacked FAS expression on CD57+DNT predicting heterozygous "loss-of-expression" FAS mutations plus acquired somatic second hits in the FAS gene, enriched in DNT. Indeed, 7 of 9 analyzed patients carried deep intronic mutations or large deletions in the FAS gene combined with sLOH detectable in DNT; 1 patient showed a FAS exon duplication. Three patients had reduced FAS expression, and 2 of them harbored mutations in the FAS promoter, which reduced FAS expression in reporter assays. Three of the 4 ALPS-U patients with normal FAS expression carried heterozygous FADD mutations with sLOH. CONCLUSION: A combination of serum biomarkers and DNT phenotyping is an accurate means to identify patients with ALPS who are missed by routine exome sequencing.
Asunto(s)
Síndrome Linfoproliferativo Autoinmune , Receptor fas , Humanos , Síndrome Linfoproliferativo Autoinmune/diagnóstico , Síndrome Linfoproliferativo Autoinmune/genética , Biomarcadores , Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Receptor fas/genética , Proteína de Dominio de Muerte Asociada a Fas/genética , MutaciónRESUMEN
OBJECTIVES: The monoclonal IL-1ß antibody canakinumab is approved for the treatment of systemic juvenile idiopathic arthritis (SJIA). Its efficacy has been proven in several trials, but not all patients show a complete and sustained response to therapy. We aimed to analyse the association of baseline serum biomarkers with treatment outcome in patients with SJIA treated with canakinumab. METHODS: Serum samples from 54 patients with active SJIA without recent macrophage activation syndrome (MAS) treated with canakinumab in an open-label response characterization study were subjected to a multiplexed bead array assay. Interesting targets from these analyses were validated by ELISA. Clinical treatment outcomes included modified paediatric ACR (pACR) 30 and 90 responses, clinically inactive disease (CID) within 15 days of treatment and sustained complete response, defined as pACR100 or CID within 15 days of treatment plus no future flare or MAS. RESULTS: In canakinumab-naïve patients most biomarkers were elevated when compared with healthy controls at baseline and some rapidly decreased by day 15 [IL-1 receptor antagonist (IL-1RA), IL-6, IL-18 and S100A12]. Responders had higher IL-18 and IFN-γ levels and lower chemokine (C-X-C motif) ligand 9 (CXCL9) levels at baseline, emphasized by the IL-18: CXCL9 and IFN-γ: CXCL9 ratios. These ratios had significant accuracy in predicting treatment responses. CONCLUSION: Differential regulation of the IL-18-IFN-γ-CXCL9 axis is observed in patients with SJIA. Higher IL-18: CXCL9 and IFN-γ: CXCL9 ratios at baseline are associated with a better clinical response to canakinumab treatment in SJIA. Future studies are needed to validate these findings and determine their generalizability to patients with recent MAS.
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Artritis Juvenil/tratamiento farmacológico , Quimiocina CXCL9/sangre , Interferón gamma/sangre , Interleucina-18/sangre , Adolescente , Artritis Juvenil/sangre , Biomarcadores/sangre , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , MasculinoRESUMEN
OBJECTIVE: Rheumatic diseases are characterized by different patterns of immune overactivation. This study investigated the correlation of whole blood type 1 interferon (IFN) stimulated gene (ISG), IL18, and CXCL9 expression with clinical disease activity in pediatric rheumatic diseases and assessed the required number of ISGs to be included in a composite type 1 IFN score. METHODS: Whole blood-derived RNA and clinical data were collected from 171 mostly pediatric patients with connective tissue diseases (CTDs), systemic autoinflammatory diseases (SAIDs), monogenic interferonopathies (IFNPs) and other inflammatory diseases, and from 38 controls. The expression of six previously established ISGs, IL18, and CXCL9 was assessed by real-time polymerase chain reaction (471 samples). Individual and composite gene expression was assessed, and correlation and threshold analyses were performed. RESULTS: Correlation between ISG expression and clinical disease activity was strongest in CTD, especially in juvenile dermatomyositis (JDM) and IFNP, and modest in patients with SAID. Threshold ISG expression levels for the detection of at least mild clinical disease activity were substantially higher in patients with systemic lupus erythematosus compared with JDM. The correlation of expression levels of limited sets of ISGs and even individual ISGs with clinical disease activity were not inferior to a composite score of six ISGs. CONCLUSION: In a real-world cohort, individual ISG expression levels robustly reflected clinical disease activity in CTD and IFNP, especially in JDM, which would simplify such analyses in clinical routine and be more cost-effective. Threshold levels varied across diseases, potentially reflecting different mechanisms of type 1 IFN overactivation.