Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Cell ; 186(9): 1950-1967.e25, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36996814

RESUMEN

Little is known about the critical metabolic changes that neural cells have to undergo during development and how temporary shifts in this program can influence brain circuitries and behavior. Inspired by the discovery that mutations in SLC7A5, a transporter of metabolically essential large neutral amino acids (LNAAs), lead to autism, we employed metabolomic profiling to study the metabolic states of the cerebral cortex across different developmental stages. We found that the forebrain undergoes significant metabolic remodeling throughout development, with certain groups of metabolites showing stage-specific changes, but what are the consequences of perturbing this metabolic program? By manipulating Slc7a5 expression in neural cells, we found that the metabolism of LNAAs and lipids are interconnected in the cortex. Deletion of Slc7a5 in neurons affects the postnatal metabolic state, leading to a shift in lipid metabolism. Additionally, it causes stage- and cell-type-specific alterations in neuronal activity patterns, resulting in a long-term circuit dysfunction.


Asunto(s)
Aminoácidos Neutros , Transportador de Aminoácidos Neutros Grandes 1 , Femenino , Humanos , Embarazo , Aminoácidos Neutros/genética , Aminoácidos Neutros/metabolismo , Encéfalo/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Mutación , Neuronas/metabolismo , Animales , Ratones
2.
Nat Immunol ; 23(8): 1246-1255, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35817845

RESUMEN

Lymph nodes (LNs) comprise two main structural elements: fibroblastic reticular cells that form dedicated niches for immune cell interaction and capsular fibroblasts that build a shell around the organ. Immunological challenge causes LNs to increase more than tenfold in size within a few days. Here, we characterized the biomechanics of LN swelling on the cellular and organ scale. We identified lymphocyte trapping by influx and proliferation as drivers of an outward pressure force, causing fibroblastic reticular cells of the T-zone (TRCs) and their associated conduits to stretch. After an initial phase of relaxation, TRCs sensed the resulting strain through cell matrix adhesions, which coordinated local growth and remodeling of the stromal network. While the expanded TRC network readopted its typical configuration, a massive fibrotic reaction of the organ capsule set in and countered further organ expansion. Thus, different fibroblast populations mechanically control LN swelling in a multitier fashion.


Asunto(s)
Ganglios Linfáticos , Células del Estroma , Animales , Fibroblastos , Linfocitos , Ratones , Ratones Endogámicos C57BL
3.
Cell ; 159(4): 775-88, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25417155

RESUMEN

Radial glial progenitors (RGPs) are responsible for producing nearly all neocortical neurons. To gain insight into the patterns of RGP division and neuron production, we quantitatively analyzed excitatory neuron genesis in the mouse neocortex using Mosaic Analysis with Double Markers, which provides single-cell resolution of progenitor division patterns and potential in vivo. We found that RGPs progress through a coherent program in which their proliferative potential diminishes in a predictable manner. Upon entry into the neurogenic phase, individual RGPs produce ?8-9 neurons distributed in both deep and superficial layers, indicating a unitary output in neuronal production. Removal of OTX1, a transcription factor transiently expressed in RGPs, results in both deep- and superficial-layer neuron loss and a reduction in neuronal unit size. Moreover, ?1/6 of neurogenic RGPs proceed to produce glia. These results suggest that progenitor behavior and histogenesis in the mammalian neocortex conform to a remarkably orderly and deterministic program.


Asunto(s)
Neocórtex/citología , Neurogénesis , Animales , Ratones , Neuroglía/metabolismo , Neuronas/metabolismo , Factores de Transcripción Otx/metabolismo , Coloración y Etiquetado/métodos , Células Madre/metabolismo
4.
Cell ; 146(2): 209-21, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21737130

RESUMEN

Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here, we use mosaic analysis with double markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell of origin in this model, even when initial mutations occur in NSCs, and highlight the importance of analyzing premalignant stages to identify the cancer cell of origin.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/genética , Glioma/patología , Mosaicismo , Células Madre Neoplásicas/patología , Animales , Astrocitos/patología , Biomarcadores , Neoplasias Encefálicas/embriología , Genes p53 , Glioma/embriología , Ratones , Datos de Secuencia Molecular , Mutación , Células-Madre Neurales/patología , Neurofibromina 1/genética , Neuronas/patología , Oligodendroglía/patología
5.
J Neurophysiol ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36695533

RESUMEN

Presynaptic inputs determine the pattern of activation of postsynaptic neurons in a neural circuit. Molecular and genetic pathways that regulate the selective formation of subsets of presynaptic inputs are largely unknown, despite significant understanding of the general process of synaptogenesis. In this study, we have begun to identify such factors using the spinal monosynaptic stretch reflex circuit as a model system. In this neuronal circuit, Ia proprioceptive afferents establish monosynaptic connections with spinal motor neurons that project to the same muscle (termed homonymous connections) or muscles with related or synergistic function. However, monosynaptic connections are not formed with motor neurons innervating muscles with antagonistic functions. The ETS transcription factor ER81 (also known as ETV1) is expressed by all proprioceptive afferents, but only a small set of motor neuron pools in the lumbar spinal cord of the mouse. Here we use conditional mouse genetic techniques to eliminate Er81 expression selectively from motor neurons. We find that ablation of Er81 in motor neurons reduces synaptic inputs from proprioceptive afferents conveying information from homonymous and synergistic muscles, with no change observed in the connectivity pattern from antagonistic proprioceptive afferents. In summary, these findings suggest a role for ER81 in defined motor neuron pools to control the assembly of specific presynaptic inputs and thereby influence the profile of activation of these motor neurons.

6.
J Neurosci ; 41(5): 813-822, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33431633

RESUMEN

The sensory and cognitive abilities of the mammalian neocortex are underpinned by intricate columnar and laminar circuits formed from an array of diverse neuronal populations. One approach to determining how interactions between these circuit components give rise to complex behavior is to investigate the rules by which cortical circuits are formed and acquire functionality during development. This review summarizes recent research on the development of the neocortex, from genetic determination in neural stem cells through to the dynamic role that specific neuronal populations play in the earliest circuits of neocortex, and how they contribute to emergent function and cognition. While many of these endeavors take advantage of model systems, consideration will also be given to advances in our understanding of activity in nascent human circuits. Such cross-species perspective is imperative when investigating the mechanisms underlying the dysfunction of early neocortical circuits in neurodevelopmental disorders, so that one can identify targets amenable to therapeutic intervention.


Asunto(s)
Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Red Nerviosa/citología , Red Nerviosa/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Neuronas/fisiología , Animales , Humanos , Lógica
7.
J Neurochem ; 149(1): 12-26, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30276807

RESUMEN

The cerebral cortex is composed of a large variety of distinct cell-types including projection neurons, interneurons, and glial cells which emerge from distinct neural stem cell lineages. The vast majority of cortical projection neurons and certain classes of glial cells are generated by radial glial progenitor cells in a highly orchestrated manner. Recent studies employing single cell analysis and clonal lineage tracing suggest that neural stem cell and radial glial progenitor lineage progression are regulated in a profound deterministic manner. In this review we focus on recent advances based mainly on correlative phenotypic data emerging from functional genetic studies in mice. We establish hypotheses to test in future research and outline a conceptual framework how epigenetic cues modulate the generation of cell-type diversity during cortical development.


Asunto(s)
Corteza Cerebral/citología , Epigénesis Genética/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Diferenciación Celular/fisiología , Corteza Cerebral/embriología , Humanos
8.
J Anat ; 235(3): 687-696, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31173344

RESUMEN

Studying the progression of the proliferative and differentiative patterns of neural stem cells at the individual cell level is crucial to the understanding of cortex development and how the disruption of such patterns can lead to malformations and neurodevelopmental diseases. However, our understanding of the precise lineage progression programme at single-cell resolution is still incomplete due to the technical variations in lineage-tracing approaches. One of the key challenges involves developing a robust theoretical framework in which we can integrate experimental observations and introduce correction factors to obtain a reliable and representative description of the temporal modulation of proliferation and differentiation. In order to obtain more conclusive insights, we carry out virtual clonal analysis using mathematical modelling and compare our results against experimental data. Using a dataset obtained with Mosaic Analysis with Double Markers, we illustrate how the theoretical description can be exploited to interpret and reconcile the disparity between virtual and experimental results.


Asunto(s)
Linaje de la Célula , Corteza Cerebral/embriología , Células Clonales , Modelos Biológicos , Neurogénesis , Animales , Ratones
9.
PLoS Biol ; 14(2): e1002382, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26894589

RESUMEN

Branching morphogenesis of the epithelial ureteric bud forms the renal collecting duct system and is critical for normal nephron number, while low nephron number is implicated in hypertension and renal disease. Ureteric bud growth and branching requires GDNF signaling from the surrounding mesenchyme to cells at the ureteric bud tips, via the Ret receptor tyrosine kinase and coreceptor Gfrα1; Ret signaling up-regulates transcription factors Etv4 and Etv5, which are also critical for branching. Despite extensive knowledge of the genetic control of these events, it is not understood, at the cellular level, how renal branching morphogenesis is achieved or how Ret signaling influences epithelial cell behaviors to promote this process. Analysis of chimeric embryos previously suggested a role for Ret signaling in promoting cell rearrangements in the nephric duct, but this method was unsuited to study individual cell behaviors during ureteric bud branching. Here, we use Mosaic Analysis with Double Markers (MADM), combined with organ culture and time-lapse imaging, to trace the movements and divisions of individual ureteric bud tip cells. We first examine wild-type clones and then Ret or Etv4 mutant/wild-type clones in which the mutant and wild-type sister cells are differentially and heritably marked by green and red fluorescent proteins. We find that, in normal kidneys, most individual tip cells behave as self-renewing progenitors, some of whose progeny remain at the tips while others populate the growing UB trunks. In Ret or Etv4 MADM clones, the wild-type cells generated at a UB tip are much more likely to remain at, or move to, the new tips during branching and elongation, while their Ret-/- or Etv4-/- sister cells tend to lag behind and contribute only to the trunks. By tracking successive mitoses in a cell lineage, we find that Ret signaling has little effect on proliferation, in contrast to its effects on cell movement. Our results show that Ret/Etv4 signaling promotes directed cell movements in the ureteric bud tips, and suggest a model in which these cell movements mediate branching morphogenesis.


Asunto(s)
Riñón/embriología , Morfogénesis , Proteínas Proto-Oncogénicas c-ets/fisiología , Proteínas Proto-Oncogénicas c-ret/fisiología , Células Madre/fisiología , Animales , Movimiento Celular , Femenino , Masculino , Ratones , Técnicas de Cultivo de Órganos
10.
J Neurosci ; 36(45): 11394-11401, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27911741

RESUMEN

This review accompanies a 2016 SFN mini-symposium presenting examples of current studies that address a central question: How do neural stem cells (NSCs) divide in different ways to produce heterogeneous daughter types at the right time and in proper numbers to build a cerebral cortex with the appropriate size and structure? We will focus on four aspects of corticogenesis: cytokinesis events that follow apical mitoses of NSCs; coordinating abscission with delamination from the apical membrane; timing of neurogenesis and its indirect regulation through emergence of intermediate progenitors; and capacity of single NSCs to generate the correct number and laminar fate of cortical neurons. Defects in these mechanisms can cause microcephaly and other brain malformations, and understanding them is critical to designing diagnostic tools and preventive and corrective therapies.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/fisiología , Citocinesis/fisiología , Neurogénesis/fisiología , Neuronas/citología , Neuronas/fisiología , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Humanos , Plasticidad Neuronal/fisiología
11.
Proc Natl Acad Sci U S A ; 111(24): 8850-5, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24876275

RESUMEN

The mammalian heart has long been considered a postmitotic organ, implying that the total number of cardiomyocytes is set at birth. Analysis of cell division in the mammalian heart is complicated by cardiomyocyte binucleation shortly after birth, which makes it challenging to interpret traditional assays of cell turnover [Laflamme MA, Murray CE (2011) Nature 473(7347):326-335; Bergmann O, et al. (2009) Science 324(5923):98-102]. An elegant multi-isotope imaging-mass spectrometry technique recently calculated the low, discrete rate of cardiomyocyte generation in mice [Senyo SE, et al. (2013) Nature 493(7432):433-436], yet our cellular-level understanding of postnatal cardiomyogenesis remains limited. Herein, we provide a new line of evidence for the differentiated α-myosin heavy chain-expressing cardiomyocyte as the cell of origin of postnatal cardiomyogenesis using the "mosaic analysis with double markers" mouse model. We show limited, life-long, symmetric division of cardiomyocytes as a rare event that is evident in utero but significantly diminishes after the first month of life in mice; daughter cardiomyocytes divide very seldom, which this study is the first to demonstrate, to our knowledge. Furthermore, ligation of the left anterior descending coronary artery, which causes a myocardial infarction in the mosaic analysis with double-marker mice, did not increase the rate of cardiomyocyte division above the basal level for up to 4 wk after the injury. The clonal analysis described here provides direct evidence of postnatal mammalian cardiomyogenesis.


Asunto(s)
Miocitos Cardíacos/citología , Envejecimiento , Alelos , Animales , Animales Recién Nacidos , Diferenciación Celular , División Celular , Proliferación Celular , Vasos Coronarios/patología , Femenino , Silenciador del Gen , Proteínas Fluorescentes Verdes/química , Corazón/crecimiento & desarrollo , Masculino , Ratones , Ratones Transgénicos , Mosaicismo , Infarto del Miocardio/patología , Isquemia Miocárdica , Miocardio/citología , Miocitos del Músculo Liso/citología , Recombinación Genética , Regeneración , Transgenes
12.
Development ; 140(3): 552-61, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23293287

RESUMEN

Faithful progression through the cell cycle is crucial to the maintenance and developmental potential of stem cells. Here, we demonstrate that neural stem cells (NSCs) and intermediate neural progenitor cells (NPCs) employ a zinc-finger transcription factor specificity protein 2 (Sp2) as a cell cycle regulator in two temporally and spatially distinct progenitor domains. Differential conditional deletion of Sp2 in early embryonic cerebral cortical progenitors, and perinatal olfactory bulb progenitors disrupted transitions through G1, G2 and M phases, whereas DNA synthesis appeared intact. Cell-autonomous function of Sp2 was identified by deletion of Sp2 using mosaic analysis with double markers, which clearly established that conditional Sp2-null NSCs and NPCs are M phase arrested in vivo. Importantly, conditional deletion of Sp2 led to a decline in the generation of NPCs and neurons in the developing and postnatal brains. Our findings implicate Sp2-dependent mechanisms as novel regulators of cell cycle progression, the absence of which disrupts neurogenesis in the embryonic and postnatal brain.


Asunto(s)
Ciclo Celular , Células-Madre Neurales/metabolismo , Neurogénesis , Factor de Transcripción Sp2/metabolismo , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Recuento de Células , Proliferación Celular , Cruzamientos Genéticos , Implantación del Embrión , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Marcadores Genéticos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Recombinación Homóloga , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Células-Madre Neurales/citología , Neuronas/citología , Neuronas/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factor de Transcripción Sp2/genética , Nicho de Células Madre , Quimera por Trasplante/embriología , Quimera por Trasplante/metabolismo
13.
Nucleic Acids Res ; 42(5): e34, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24304893

RESUMEN

To reveal the full potential of human pluripotent stem cells, new methods for rapid, site-specific genomic engineering are needed. Here, we describe a system for precise genetic modification of human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We identified a novel human locus, H11, located in a safe, intergenic, transcriptionally active region of chromosome 22, as the recipient site, to provide robust, ubiquitous expression of inserted genes. Recipient cell lines were established by site-specific placement of a 'landing pad' cassette carrying attP sites for phiC31 and Bxb1 integrases at the H11 locus by spontaneous or TALEN-assisted homologous recombination. Dual integrase cassette exchange (DICE) mediated by phiC31 and Bxb1 integrases was used to insert genes of interest flanked by phiC31 and Bxb1 attB sites at the H11 locus, replacing the landing pad. This system provided complete control over content, direction and copy number of inserted genes, with a specificity of 100%. A series of genes, including mCherry and various combinations of the neural transcription factors LMX1a, FOXA2 and OTX2, were inserted in recipient cell lines derived from H9 ESC, as well as iPSC lines derived from a Parkinson's disease patient and a normal sibling control. The DICE system offers rapid, efficient and precise gene insertion in ESC and iPSC and is particularly well suited for repeated modifications of the same locus.


Asunto(s)
Células Madre Embrionarias/metabolismo , Genoma Humano , Células Madre Pluripotentes Inducidas/metabolismo , Mutagénesis Insercional/métodos , Animales , Línea Celular , Células Cultivadas , Cromosomas Humanos Par 11 , Expresión Génica , Sitios Genéticos , Genómica/métodos , Recombinación Homóloga , Humanos , Integrasas/metabolismo , Ratones , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
15.
Adv Exp Med Biol ; 800: 1-24, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24243097

RESUMEN

Coordinated migration of newly-born neurons to their target territories is essential for correct neuronal circuit assembly in the developing brain. Although a cohort of signaling pathways has been implicated in the regulation of cortical projection neuron migration, the precise molecular mechanisms and how a balanced interplay of cell-autonomous and non-autonomous functions of candidate signaling molecules controls the discrete steps in the migration process, are just being revealed. In this chapter, I will focally review recent advances that improved our understanding of the cell-autonomous and possible cell-nonautonomous functions of the evolutionarily conserved LIS1/NDEL1-complex in regulating the sequential steps of cortical projection neuron migration. I will then elaborate on the emerging concept that the Reelin signaling pathway, acts exactly at precise stages in the course of cortical projection neuron migration. Lastly, I will discuss how finely tuned transcriptional programs and downstream effectors govern particular aspects in driving radial migration at discrete stages and how they regulate the precise positioning of cortical projection neurons in the developing cerebral cortex.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Corteza Cerebral/citología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Proteína Reelina , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
16.
Proc Natl Acad Sci U S A ; 108(19): 7902-7, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21464299

RESUMEN

Microinjection of recombinant DNA into zygotic pronuclei has been widely used for producing transgenic mice. However, with this method, the insertion site, integrity, and copy number of the transgene cannot be controlled. Here, we present an integrase-based approach to produce transgenic mice via pronuclear injection, whereby an intact single-copy transgene can be inserted into predetermined chromosomal loci with high efficiency (up to 40%), and faithfully transmitted through generations. We show that neighboring transgenic elements and bacterial DNA within the transgene cause profound silencing and expression variability of the transgenic marker. Removal of these undesirable elements leads to global high-level marker expression from transgenes driven by a ubiquitous promoter. We also obtained faithful marker expression from a tissue-specific promoter. The technique presented here will greatly facilitate murine transgenesis and precise structure/function dissection of mammalian gene function and regulation in vivo.


Asunto(s)
Técnicas de Transferencia de Gen , Integrasas/metabolismo , Ratones Transgénicos/genética , Animales , Sitios de Ligazón Microbiológica/genética , Secuencia de Bases , Sitios de Unión/genética , Cartilla de ADN/genética , Femenino , Expresión Génica , Marcadores Genéticos , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Microinyecciones , Embarazo , Proteínas Recombinantes/genética , Distribución Tisular
17.
STAR Protoc ; 5(1): 102771, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38070137

RESUMEN

Mosaic analysis with double markers (MADM) technology enables the generation of genetic mosaic tissue in mice and high-resolution phenotyping at the individual cell level. Here, we present a protocol for isolating MADM-labeled cells with high yield for downstream molecular analyses using fluorescence-activated cell sorting (FACS). We describe steps for generating MADM-labeled mice, perfusion, single-cell suspension, and debris removal. We then detail procedures for cell sorting by FACS and downstream analysis. This protocol is suitable for embryonic to adult mice. For complete details on the use and execution of this protocol, please refer to Contreras et al. (2021).1.


Asunto(s)
Encéfalo , Animales , Ratones , Citometría de Flujo , Separación Celular , Movimiento Celular , Perfusión
18.
STAR Protoc ; 5(3): 103157, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38935508

RESUMEN

The generation of diverse cell types during development is fundamental to brain functions. We outline a protocol to quantitatively assess the clonal output of individual neural progenitors using mosaic analysis with double markers (MADM) in mice. We first describe steps to acquire and reconstruct adult MADM clones in the superior colliculus. Then we detail analysis pipelines to determine clonal composition and architecture. This protocol enables the buildup of quantitative frameworks of lineage progression with precise spatial resolution in the brain. For complete details on the use and execution of this protocol, please refer to Cheung et al.1.


Asunto(s)
Linaje de la Célula , Animales , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Biomarcadores/metabolismo , Biomarcadores/análisis , Colículos Superiores/citología , Mosaicismo
19.
STAR Protoc ; 5(1): 102795, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38165800

RESUMEN

Mosaic analysis with double markers (MADM) technology enables the sparse labeling of genetically defined neurons. We present a protocol for time-lapse imaging of cortical projection neuron migration in mice using MADM. We describe steps for the isolation, culturing, and 4D imaging of neuronal dynamics in MADM-labeled brain tissue. While this protocol is compatible with other single-cell labeling methods, the MADM approach provides a genetic platform for the functional assessment of cell-autonomous candidate gene function and the relative contribution of non-cell-autonomous effects. For complete details on the use and execution of this protocol, please refer to Hansen et al. (2022),1 Contreras et al. (2021),2 and Amberg and Hippenmeyer (2021).3.


Asunto(s)
Neuronas , Ratones , Animales , Imagen de Lapso de Tiempo
20.
STAR Protoc ; 5(3): 103168, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38968076

RESUMEN

The lineage relationship of clonally-related cells offers important insights into the ontogeny and cytoarchitecture of the brain in health and disease. Here, we provide a protocol to concurrently assess cell lineage relationship and cell-type identity among clonally-related cells in situ. We first describe the preparation and screening of acute brain slices containing clonally-related cells labeled using mosaic analysis with double markers (MADM). We then outline steps to collect RNA from individual cells for downstream applications and cell-type identification using RNA sequencing. For complete details on the use and execution of this protocol, please refer to Cheung et al.1.


Asunto(s)
Encéfalo , Linaje de la Célula , Animales , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Células Clonales/citología , Análisis de Secuencia de ARN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA