Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
iScience ; 27(6): 109833, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39055606

RESUMEN

Insulin plays a crucial role in regulating the metabolism of blood glucose, amino acids (aa), and lipids in humans. However, the mechanisms by which insulin selectively regulates these metabolites are not fully understood. To address this question, we used mathematical modeling to identify the selective regulatory mechanisms of insulin on blood aa and lipids. Our study revealed that insulin negatively regulates the influx and positively regulates the efflux of lipids, consistent with previous findings. By contrast, we did not observe the previously reported insulin's negative regulation of branched-chain aa (BCAA) influx; instead, we found that insulin positively regulates BCAA efflux. We observed that the earlier peak time of lipids compared to BCAA is dependent on insulin's negative regulation of their influx. Overall, our findings shed new light on how insulin selectively regulates the levels of different metabolites in human blood, providing insights into the metabolic disorder pathogenesis and potential therapies.

2.
J Endocr Soc ; 8(6): bvae067, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38633895

RESUMEN

Context: Sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels by promoting urinary glucose excretion, but their overall effects on hormonal and metabolic status remain unclear. Objective: We here investigated the roles of insulin and glucagon in the regulation of glycemia in individuals treated with an SGLT2 inhibitor using mathematical model analysis. Methods: Hyperinsulinemic-euglycemic clamp and oral glucose tolerance tests were performed in 68 individuals with type 2 diabetes treated with the SGLT2 inhibitor dapagliflozin. Data previously obtained from such tests in 120 subjects with various levels of glucose tolerance and not treated with an SGLT2 inhibitor were examined as a control. Mathematical models of the feedback loops connecting glucose and insulin (GI model) or glucose, insulin, and glucagon (GIG model) were generated. Results: Analysis with the GI model revealed that the disposition index/clearance, which is defined as the product of insulin sensitivity and insulin secretion divided by the square of insulin clearance and represents the glucose-handling ability of insulin, was significantly correlated with glycemia in subjects not taking an SGLT2 inhibitor but not in those taking dapagliflozin. Analysis with the GIG model revealed that a metric defined as the product of glucagon sensitivity and glucagon secretion divided by glucagon clearance (designated production index/clearance) was significantly correlated with blood glucose level in subjects treated with dapagliflozin. Conclusion: Treatment with an SGLT2 inhibitor alters the relation between insulin effect and blood glucose concentration, and glucagon effect may account for variation in glycemia among individuals treated with such drugs.

3.
Elife ; 122024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722314

RESUMEN

Retinal pigment epithelium (RPE) cells show heterogeneous levels of pigmentation when cultured in vitro. To know whether their color in appearance is correlated with the function of the RPE, we analyzed the color intensities of human-induced pluripotent stem cell-derived RPE cells (iPSC-RPE) together with the gene expression profile at the single-cell level. For this purpose, we utilized our recent invention, Automated Live imaging and cell Picking System (ALPS), which enabled photographing each cell before RNA-sequencing analysis to profile the gene expression of each cell. While our iPSC-RPE were categorized into four clusters by gene expression, the color intensity of iPSC-RPE did not project any specific gene expression profiles. We reasoned this by less correlation between the actual color and the gene expressions that directly define the level of pigmentation, from which we hypothesized the color of RPE cells may be a temporal condition not strongly indicating the functional characteristics of the RPE.


The backs of our eyes are lined with retinal pigment epithelial cells (or RPE cells for short). These cells provide nutrition to surrounding cells and contain a pigment called melanin that absorbs excess light that might interfere with vision. By doing so, they support the cells that receive light to enable vision. However, with age, RPE cells can become damaged and less able to support other cells. This can lead to a disease called age-related macular degeneration, which can cause blindness. One potential way to treat this disease is to transplant healthy RPE cells into eyes that have lost them. These healthy cells can be grown in the laboratory from human pluripotent stem cells, which have the capacity to turn into various specialist cells. Stem cell-derived RPE cells growing in a dish contain varying amounts of melanin, resulting in some being darker than others. This raised the question of whether pigment levels affect the function of RPE cells. However, it was difficult to compare single cells containing various amounts of pigment as most previous studies only analyzed large numbers of RPE cells mixed together. Nakai-Futatsugi et al. overcame this hurdle using a technique called Automated Live imaging and cell Picking System (also known as ALPS). More than 2300 stem cell-derived RPE cells were photographed individually and the color of each cell was recorded. The gene expression of each cell was then measured to investigate whether certain genes being switched on or off affects pigment levels and cell function. Analysis did not find a consistent pattern of gene expression underlying the pigmentation of RPE cells. Even gene expression related to the production of melanin was only slightly linked to the color of the cells. These findings suggests that the RPE cell color fluctuates and is not primarily determined by which genes are switched on or off. Future experiments are required to determine whether the findings are the same for RPE cells grown naturally in the eyes and whether different pigment levels affect their capacity to protect the rest of the eye.


Asunto(s)
Células Madre Pluripotentes Inducidas , Pigmentación , Epitelio Pigmentado de la Retina , Transcriptoma , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/fisiología , Células Madre Pluripotentes Inducidas/metabolismo , Pigmentación/genética , Perfilación de la Expresión Génica , Células Cultivadas , Diferenciación Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA