RESUMEN
Processing bodies (P-bodies) are cytoplasmatic mRNP granules containing non-translating mRNAs and proteins from the mRNA decay and silencing machineries. The mechanism of P-body assembly has been typically addressed by depleting P-body components. Here we apply a complementary approach and establish an automated cell-based assay platform to screen for molecules affecting P-body assembly. From a unique library of compounds derived from myxobacteria, 30 specifically inhibited P-body assembly. Gephyronic acid A (GA), a eukaryotic protein synthesis inhibitor, showed the strongest effect. GA also inhibited, under stress conditions, phosphorylation of eIF2α and stress granule formation. Other hits uncovered interesting novel links between P-body assembly, lipid metabolism, and internal organelle physiology. The obtained results provide a chemical toolbox to manipulate P-body assembly and function.
Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Descubrimiento de Drogas , Myxococcales/química , Ribonucleoproteínas Citoplasmáticas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas , Línea Celular Tumoral , Cicloheximida/farmacología , Gránulos Citoplasmáticos/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Células HeLa , Humanos , Metabolismo de los Lípidos , Myxococcales/metabolismo , Fosforilación , Puromicina/farmacología , Estabilidad del ARNRESUMEN
Primary liver cancer (PLC) comprising hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) represents the third deadliest cancer worldwide with still insufficient treatment options. We have previously found that CD4 T helper 1 (Th1) response is indispensable for the protection against PLC. In the present research, we aimed to test the potent inducers of Th1 responses, live-attenuated Listeria monocytogenes ∆actA/∆inlB strain as preventive/therapeutic vaccine candidate in liver fibrosis, HCC, and CCA. Studies were performed using autochthonous models of HCC and CCA, highly reflecting human disease. L. monocytogenes ∆actA/∆inlB demonstrated strong safety/efficacy in premalignant and malignant liver diseases. The protective mechanism relied on the induction of strong tumor-specific immune responses that keep the development of hepatobiliary cancers under control. Combination therapy, comprising Listeria vaccination and a checkpoint inhibitor blockade significantly extended the survival of HCC-bearing mice even at the advanced stages of the disease. This is the first report on the safety and efficacy of Listeria-based vaccine in liver fibrosis, as well as the first proof of principle study on Listeria-based vaccines in CCA. Our study paves the way for the use of live-attenuated Listeria as safe and efficient vaccine and a potent inducer of protective immune responses in liver fibrosis and hepatobiliary malignancies.
Asunto(s)
Vacunas contra el Cáncer , Carcinoma Hepatocelular , Listeria monocytogenes , Neoplasias Hepáticas , Animales , Vacunas contra el Cáncer/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/prevención & control , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/prevención & control , Ratones , Vacunas AtenuadasRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) emerged in late 2019 and resulted in a devastating pandemic. Although the first approved vaccines were already administered by the end of 2020, worldwide vaccine availability is still limited. Moreover, immune escape variants of the virus are emerging against which the current vaccines may confer only limited protection. Further, existing antivirals and treatment options against COVID-19 show only limited efficacy. Influenza A virus (IAV) defective interfering particles (DIPs) were previously proposed not only for antiviral treatment of the influenza disease but also for pan-specific treatment of interferon (IFN)-sensitive respiratory virus infections. To investigate the applicability of IAV DIPs as an antiviral for the treatment of COVID-19, we conducted in vitro co-infection experiments with cell culture-derived DIPs and the IFN-sensitive SARS-CoV-2 in human lung cells. We show that treatment with IAV DIPs leads to complete abrogation of SARS-CoV-2 replication. Moreover, this inhibitory effect was dependent on janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling. Further, our results suggest boosting of IFN-induced antiviral activity by IAV DIPs as a major contributor in suppressing SARS-CoV-2 replication. Thus, we propose IAV DIPs as an effective antiviral agent for treatment of COVID-19, and potentially also for suppressing the replication of new variants of SARS-CoV-2.
Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Inmunidad Innata/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/inmunología , COVID-19/inmunología , Línea Celular Tumoral , Chlorocebus aethiops , Virus Defectuosos/inmunología , Humanos , Virus de la Influenza A/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Células Vero , Replicación Viral/efectos de los fármacosRESUMEN
Targeted antigen delivery to cross-presenting dendritic cells (DC) in vivo efficiently induces T effector cell responses and displays a valuable approach in vaccine design. Antigen is delivered to DC via antibodies specific for endocytosis receptors such as DEC-205 that induce uptake, processing, and MHC class I- and II-presentation. Efficient and reliable conjugation of the desired antigen to a suitable antibody is a critical step in DC targeting and among other factors depends on the format of the antigen. Chemical conjugation of full-length protein to purified antibodies is one possible strategy. In the past, we have successfully established cross-linking of the model antigen ovalbumin (OVA) and a DEC-205-specific IgG2a antibody (αDEC-205) for in vivo DC targeting studies in mice. The first step of the protocol is the purification of the antibody from the supernatant of the NLDC (non-lymphoid dendritic cells)-145 hybridoma by affinity chromatography. The purified antibody is activated for chemical conjugation by sulfo-SMCC (sulfosuccinimidyl 4-[N-maleimidomethyl] cyclohexane-1-carboxylate) while at the same time the sulfhydryl-groups of the OVA protein are exposed through incubation with TCEP-HCl (tris (2-carboxyethyl) phosphine hydrochloride). Excess TCEP-HCl and sulfo-SMCC are removed and the antigen is mixed with the activated antibody for overnight coupling. The resulting αDEC-205/OVA conjugate is concentrated and freed from unbound OVA. Successful conjugation of OVA to αDEC-205 is verified by western blot analysis and enzyme-linked immunosorbent assay (ELISA). We have successfully used chemically crosslinked αDEC-205/OVA to induce cytotoxic T cell responses in the liver and to compare different adjuvants for their potential in inducing humoral and cellular immunity following in vivo targeting of DEC-205+ DC. Beyond that, such chemically coupled antibody/antigen conjugates offer valuable tools for the efficient induction of vaccine responses to tumor antigens and have been proven to be superior to classical immunization approaches regarding the prevention and therapy of various types of tumors.
Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Monoclonales/administración & dosificación , Antígenos CD/inmunología , Células Dendríticas/inmunología , Inmunidad Celular/inmunología , Lectinas Tipo C/inmunología , Antígenos de Histocompatibilidad Menor/inmunología , Receptores de Superficie Celular/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Antígenos CD/metabolismo , Reactividad Cruzada , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Femenino , Técnicas In Vitro , Lectinas Tipo C/metabolismo , Ratones , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Menor/metabolismo , Ovalbúmina/inmunología , Receptores de Superficie Celular/metabolismoAsunto(s)
Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/metabolismo , Antígenos CD4/metabolismo , Diseño de Fármacos , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/inmunología , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Sitios de Unión , Materiales Biomiméticos/química , Antígenos CD4/química , Cristalografía por Rayos X , Proteína gp120 de Envoltorio del VIH/metabolismo , Concentración 50 Inhibidora , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de ProteínaRESUMEN
The Mena EVH1 domain, a protein-interaction module involved in actin-based cell motility, recognizes proline-rich ligand motifs, which are also present in the sequence of the surface protein ActA of Listeria monocytogenes. The interaction of ActA with host Mena EVH1 enables the bacterium to actively recruit host actin in order to spread into neighboring cells. Based on the crystal structure of Mena EVH1 in complex with a polyproline peptide ligand, we have generated a range of assembled peptides presenting the Mena EVH1 fragments that make up its discontinuous binding site for proline-rich ligands. Some of these peptides were found to inhibit the interaction of Mena EVH1 with the ligand pGolemi. One of them was further characterized at the level of individual amino acid residues; this yielded information on the contribution of individual positions of the peptides to the interaction with the ligand and identified sites for future structure optimization.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Imitación Molecular , Prolina/química , Prolina/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Concentración 50 Inhibidora , Ligandos , Listeria monocytogenes/química , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de ProteínaRESUMEN
Synthetic mimetics of the CD4-binding site of HIV-1 gp120 are promising candidates for HIV-1 entry inhibition, as well as immunogen candidates for the elicitation of virus-neutralizing antibodies. On the basis of the crystal structure of gp120 in complex with CD4, we have used a recently introduced strategy for the generation of structurally diverse scaffolds to design and synthesize a scaffolded peptide, in which three fragments, making up the sequentially discontinuous binding site of gp120 for CD4, are presented in a nonlinear and discontinuous fashion through a molecular scoffold, which restrains conformational flexibility. The affinities of this molecule to CD4, as well as to the broadly neutralizing antibody mAb b12, whose epitope overlaps the CD4-binding site of gp120, were determined in competitive binding assays.