Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34751397

RESUMEN

In bacteria stop codons are recognized by one of two class I release factors (RF1) recognizing TAG, RF2 recognizing TGA, and TAA being recognized by both. Variation across bacteria in the relative abundance of RF1 and RF2 is thus hypothesized to select for different TGA/TAG usage. This has been supported by correlations between TAG:TGA ratios and RF1:RF2 ratios across multiple bacterial species, potentially also explaining why TAG usage is approximately constant despite extensive variation in GC content. It is, however, possible that stop codon trends are determined by other forces and that RF ratios adapt to stop codon usage, rather than vice versa. Here, we determine which direction of the causal arrow is the more parsimonious. Our results support the notion that RF1/RF2 ratios become adapted to stop codon usage as the same trends, notably the anomalous TAG behavior, are seen in contexts where RF1:RF2 ratios cannot be, or are unlikely to be, causative, that is, at 3'untranslated sites never used for translation termination, in intragenomic analyses, and across archaeal species (that possess only one RF1). We conclude that specifics of RF biology are unlikely to fully explain TGA/TAG relative usage. We discuss why the causal relationships for the evolution of synonymous stop codon usage might be different from those affecting synonymous sense codon usage, noting that transitions between TGA and TAG require two-point mutations one of which is likely to be deleterious.


Asunto(s)
Bacterias , Uso de Codones , Codón de Terminación , Factores de Terminación de Péptidos , Bacterias/genética , Composición de Base , Factores de Terminación de Péptidos/genética
3.
Mol Biol Evol ; 38(1): 244-262, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32797190

RESUMEN

In correctly predicting that selection efficiency is positively correlated with the effective population size (Ne), the nearly neutral theory provides a coherent understanding of between-species variation in numerous genomic parameters, including heritable error (germline mutation) rates. Does the same theory also explain variation in phenotypic error rates and in abundance of error mitigation mechanisms? Translational read-through provides a model to investigate both issues as it is common, mostly nonadaptive, and has good proxy for rate (TAA being the least leaky stop codon) and potential error mitigation via "fail-safe" 3' additional stop codons (ASCs). Prior theory of translational read-through has suggested that when population sizes are high, weak selection for local mitigation can be effective thus predicting a positive correlation between ASC enrichment and Ne. Contra to prediction, we find that ASC enrichment is not correlated with Ne. ASC enrichment, although highly phylogenetically patchy, is, however, more common both in unicellular species and in genes expressed in unicellular modes in multicellular species. By contrast, Ne does positively correlate with TAA enrichment. These results imply that local phenotypic error rates, not local mitigation rates, are consistent with a drift barrier/nearly neutral model.


Asunto(s)
Codón de Terminación , Evolución Molecular , Tasa de Mutación , Selección Genética , Arabidopsis , Dictyostelium , Densidad de Población
4.
Mol Biol Evol ; 38(1): 67-83, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32687176

RESUMEN

Large-scale re-engineering of synonymous sites is a promising strategy to generate vaccines either through synthesis of attenuated viruses or via codon-optimized genes in DNA vaccines. Attenuation typically relies on deoptimization of codon pairs and maximization of CpG dinucleotide frequencies. So as to formulate evolutionarily informed attenuation strategies that aim to force nucleotide usage against the direction favored by selection, here, we examine available whole-genome sequences of SARS-CoV-2 to infer patterns of mutation and selection on synonymous sites. Analysis of mutational profiles indicates a strong mutation bias toward U. In turn, analysis of observed synonymous site composition implicates selection against U. Accounting for dinucleotide effects reinforces this conclusion, observed UU content being a quarter of that expected under neutrality. Possible mechanisms of selection against U mutations include selection for higher expression, for high mRNA stability or lower immunogenicity of viral genes. Consistent with gene-specific selection against CpG dinucleotides, we observe systematic differences of CpG content between SARS-CoV-2 genes. We propose an evolutionarily informed approach to attenuation that, unusually, seeks to increase usage of the already most common synonymous codons. Comparable analysis of H1N1 and Ebola finds that GC3 deviated from neutral equilibrium is not a universal feature, cautioning against generalization of results.


Asunto(s)
Vacunas contra la COVID-19/genética , COVID-19/genética , Genoma Viral , Mutación , SARS-CoV-2/genética , Selección Genética , COVID-19/prevención & control , Humanos , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Viral/genética , Uracilo
5.
PLoS Genet ; 15(9): e1008386, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31527909

RESUMEN

Errors throughout gene expression are likely deleterious, hence genomes are under selection to ameliorate their consequences. Additional stop codons (ASCs) are in-frame nonsense 'codons' downstream of the primary stop which may be read by translational machinery should the primary stop have been accidentally read through. Prior evidence in several eukaryotes suggests that ASCs are selected to prevent potentially-deleterious consequences of read-through. We extend this evidence showing that enrichment of ASCs is common but not universal for single cell eukaryotes. By contrast, there is limited evidence as to whether the same is true in other taxa. Here, we provide the first systematic test of the hypothesis that ASCs act as a fail-safe mechanism in eubacteria, a group with high read-through rates. Contra to the predictions of the hypothesis we find: there is paucity, not enrichment, of ASCs downstream; substitutions that degrade stops are more frequent in-frame than out-of-frame in 3' sequence; highly expressed genes are no more likely to have ASCs than lowly expressed genes; usage of the leakiest primary stop (TGA) in highly expressed genes does not predict ASC enrichment even compared to usage of non-leaky stops (TAA) in lowly expressed genes, beyond downstream codon +1. Any effect at the codon immediately proximal to the primary stop can be accounted for by a preference for a T/U residue immediately following the stop, although if anything, TT- and TC- starting codons are preferred. We conclude that there is no compelling evidence for ASC selection in eubacteria. This presents an unusual case in which the same error could be solved by the same mechanism in eukaryotes and prokaryotes but is not. We discuss two possible explanations: that, owing to the absence of nonsense mediated decay, bacteria may solve read-through via gene truncation and in eukaryotes certain prion states cause raised read-through rates.


Asunto(s)
Regiones no Traducidas 3'/genética , Bacterias/genética , Codón de Terminación/genética , Codón sin Sentido/genética , Eucariontes/genética , Evolución Molecular , Expresión Génica/genética , Genoma , Degradación de ARNm Mediada por Codón sin Sentido/genética , Sistemas de Lectura Abierta/genética
7.
Genome Biol Evol ; 14(8)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35867377

RESUMEN

Protein coding genes terminate with one of three stop codons (TAA, TGA, or TAG) that, like synonymous codons, are not employed equally. With TGA and TAG having identical nucleotide content, analysis of their differential usage provides an unusual window into the forces operating on what are ostensibly functionally identical residues. Across genomes and between isochores within the human genome, TGA usage increases with G + C content but, with a common G + C → A + T mutation bias, this cannot be explained by mutation bias-drift equilibrium. Increased usage of TGA in G + C-rich genomes or genomic regions is also unlikely to reflect selection for the optimal stop codon, as TAA appears to be universally optimal, probably because it has the lowest read-through rate. Despite TAA being favored by selection and mutation bias, as with codon usage bias G + C pressure is the prime determinant of between-species TGA usage trends. In species with strong G + C-biased gene conversion (gBGC), such as mammals and birds, the high usage and conservation of TGA is best explained by an A + T → G + C repair bias. How to explain TGA enrichment in other G + C-rich genomes is less clear. Enigmatically, across bacterial and archaeal species and between human isochores TAG usage is mostly unresponsive to G + C pressure. This unresponsiveness we dub the TAG paradox as currently no mutational, selective, or gBGC model provides a well-supported explanation. That TAG does increase with G + C usage across eukaryotes makes the usage elsewhere yet more enigmatic. We suggest resolution of the TAG paradox may provide insights into either an unknown but common selective preference (probably at the DNA/RNA level) or an unrecognized complexity to the action of gBGC.


Asunto(s)
Uso de Codones , Conversión Génica , Animales , Codón de Terminación , Evolución Molecular , Humanos , Isocoras , Mamíferos/genética , Selección Genética
8.
Genome Biol Evol ; 13(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33988683

RESUMEN

The nucleotide composition, dinucleotide composition, and codon usage of many viruses differ from their hosts. These differences arise because viruses are subject to unique mutation and selection pressures that do not apply to host genomes; however, the molecular mechanisms that underlie these evolutionary forces are unclear. Here, we analyzed the patterns of codon usage in 1,520 vertebrate-infecting viruses, focusing on parameters known to be under selection and associated with gene regulation. We find that GC content, dinucleotide content, and splicing and m6A modification-related sequence motifs are associated with the type of genetic material (DNA or RNA), strandedness, and replication compartment of viruses. In an experimental follow-up, we find that the effects of GC content on gene expression depend on whether the genetic material is delivered to the cell as DNA or mRNA, whether it is transcribed by endogenous or exogenous RNA polymerase, and whether transcription takes place in the nucleus or cytoplasm. Our results suggest that viral codon usage cannot be explained by a simple adaptation to the codon usage of the host-instead, it reflects the combination of multiple selective and mutational pressures, including the need for efficient transcription, export, and immune evasion.


Asunto(s)
Uso de Codones , Virus , Codón/genética , Evolución Molecular , Genoma Viral , Evasión Inmune , ARN Mensajero/genética , Virus/genética
9.
Genome Biol Evol ; 13(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34427640

RESUMEN

Owing to a lag between a deleterious mutation's appearance and its selective removal, gold-standard methods for mutation rate estimation assume no meaningful loss of mutations between parents and offspring. Indeed, from analysis of closely related lineages, in SARS-CoV-2, the Ka/Ks ratio was previously estimated as 1.008, suggesting no within-host selection. By contrast, we find a higher number of observed SNPs at 4-fold degenerate sites than elsewhere and, allowing for the virus's complex mutational and compositional biases, estimate that the mutation rate is at least 49-67% higher than would be estimated based on the rate of appearance of variants in sampled genomes. Given the high Ka/Ks one might assume that the majority of such intrahost selection is the purging of nonsense mutations. However, we estimate that selection against nonsense mutations accounts for only ∼10% of all the "missing" mutations. Instead, classical protein-level selective filters (against chemically disparate amino acids and those predicted to disrupt protein functionality) account for many missing mutations. It is less obvious why for an intracellular parasite, amino acid cost parameters, notably amino acid decay rate, is also significant. Perhaps most surprisingly, we also find evidence for real-time selection against synonymous mutations that move codon usage away from that of humans. We conclude that there is common intrahost selection on SARS-CoV-2 that acts on nonsense, missense, and possibly synonymous mutations. This has implications for methods of mutation rate estimation, for determining times to common ancestry and the potential for intrahost evolution including vaccine escape.


Asunto(s)
COVID-19/virología , Mutación , SARS-CoV-2/genética , Uso de Codones , Codón sin Sentido , Evolución Molecular , Humanos , Modelos Genéticos , Tasa de Mutación , Mutación Missense , Polimorfismo de Nucleótido Simple , Selección Genética , Mutación Silenciosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA