Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Arch Toxicol ; 97(11): 2893-2901, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37612376

RESUMEN

Long before we recognized how significant they were, nanoparticles were already all around in the environment. Since then, an extensive number of synthetic nanoparticles have been engineered to improve our quality of life through rigorous scientific research on their uses in practically every industry, including semiconductor devices, food, medicine, and agriculture. The extensive usage of nanoparticles in commodities that come into proximity with human skin and internal organs through medicine has raised significant concerns over the years. TiO2 nanoparticles (NPs) are widely employed in a wide range of industries, such as cosmetics and food packaging. The interaction and internalization of TiO2 NPs in living cells have been studied by the scientific community for many years. In the present study, we investigated the cell viability, nanomechanical characteristics, and fluorescence response of NIH-3T3 cells treated with sterile DMEM TiO2 nanoparticle solution using a liquid-mode atomic force microscope and a fluorescence microscope. Two different sorts of response systems have been observed in the cells depending on the size of the NPs. TiO2 nanoparticles smaller than 100 nm support its initial stages cell viability, and cells internalize and metabolize NPs. In contrast, bigger TiO2 NPs (> 100 nm) are not completely metabolized and cannot impair cell survival. Furthermore, bigger NPs above 100 nm could not be digested by the cells, therefore hindering cell development, whereas below 100 nm TiO2 stimulated uncontrolled cell growth akin to cancerous type cells. The cytoskeleton softens as a result of particle internalization, as seen by the nanomechanical characteristics of the nanoparticle treated cells. According to our investigations, TiO2 smaller than 100 nm facilitates unintended cancer cell proliferation, whereas larger NPs ultimately suppress cell growth. Before being incorporated into commercial products, similar effects or repercussions that could result from employing different NPs should be carefully examined.


Asunto(s)
Fibroblastos , Calidad de Vida , Animales , Ratones , Humanos , Células 3T3 NIH , Microscopía Fluorescente
2.
Nanotechnology ; 31(14): 145709, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-31846950

RESUMEN

In this work, we have inspected the theoretical resistive switching properties of two ReRAM models based on heterojunction structures of Cu/SiO x nanoparticles (NPs)/Si and Si/SiO x NPs/Si, in which dielectric layers of the silica nanoparticles present dislocations at bicrystal interfaces. To validate the theoretical model, a charge storage device with the structure Cu/SiO x /Si was fabricated and its ReRAM properties were studied. Our examinations on the electrical, thermal and structural aspects of resistive switching uncovered the switching behavior relies upon the material properties and electrical characteristics of the switching layers, as well as the metal electrodes and the interfacial structure of grains within the dielectric materials. We also determined that the application of an external electric field at Grain Boundaries (GB) is crucial to resistive switching behavior. Moreover, we have demonstrated that the switching behavior is influenced by variations in the atomic structure and electronic properties, at the atomic length scale and picosecond timescale. Our findings furnish a useful reference for the future development and optimization of materials used in this technology.

3.
ACS Appl Mater Interfaces ; 16(8): 10485-10495, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38367282

RESUMEN

In this study, we successfully synthesized two-phase titanium oxide (TiOx) heterogeneous nanoparticles (NPs) using an advanced sol-gel method, a significant stride in developing efficient, room temperature (RT) NO2 gas sensors. The prepared two-phase TiOx heterogeneous NPs exhibited exceptional sensitivity to low concentrations of NO2 gas at RT. The heightened gas response was attributed to a significant presence of oxygen vacancies, creating intermediate states within the two-phase heterostructures and thus narrowing the band gap. This facilitated electron transport from the valence band (VB) to the conduction band (CB), resulting in increased current at RT. The XPS analysis confirmed a substantial amount of chemisorbed oxygen O2(ads)- within the two-phase heterostructures, providing more chemisorption sites for nitrogen dioxide gas. This increase in chemisorption sites significantly improved the gas response. Furthermore, the introduction of zinc into the TiOx NPs reduced their band gap, enhancing the background resistance signal-to-noise ratio and increasing the response while maintaining remarkable stability. In summary, our work introduces a promising RT NO2 sensor based on two-phase TiOx heterogeneous NPs, holding great potential for applications in environmental monitoring and gas sensing technology. In future work, we aim to delve deeper into the capabilities of the sensor, exploring broader applications and refining its design for enhanced practicality in environmental monitoring.

4.
Science ; 384(6693): 325-332, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38669568

RESUMEN

Artificial intelligence (AI) edge devices prefer employing high-capacity nonvolatile compute-in-memory (CIM) to achieve high energy efficiency and rapid wakeup-to-response with sufficient accuracy. Most previous works are based on either memristor-based CIMs, which suffer from accuracy loss and do not support training as a result of limited endurance, or digital static random-access memory (SRAM)-based CIMs, which suffer from large area requirements and volatile storage. We report an AI edge processor that uses a memristor-SRAM CIM-fusion scheme to simultaneously exploit the high accuracy of the digital SRAM CIM and the high energy-efficiency and storage density of the resistive random-access memory memristor CIM. This also enables adaptive local training to accommodate personalized characterization and user environment. The fusion processor achieved high CIM capacity, short wakeup-to-response latency (392 microseconds), high peak energy efficiency (77.64 teraoperations per second per watt), and robust accuracy (<0.5% accuracy loss). This work demonstrates that memristor technology has moved beyond in-lab development stages and now has manufacturability for AI edge processors.

5.
Nanomaterials (Basel) ; 13(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36839123

RESUMEN

The non-enzymatic glucose sensing response of pure and Ag-decorated vertically aligned ZnO nanorods grown on Si substrates was investigated. The simple low-temperature hydrothermal method was employed to synthesize the ZnO NRs on the Si substrates, and then Ag decoration was achieved by sputtering. The crystal structure and surface morphologies were characterized by X-ray diffraction, field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The Ag incorporation on the ZnO NR surfaces was confirmed using EDS mapping and spectra. Furthermore, the chemical states, the variation in oxygen vacancies, and the surface modifications of Ag@ZnO were investigated by XPS analysis. Both the glucose/ZnO/Si and glucose/Ag@ZnO/Si device structures were investigated for their non-enzymatic glucose sensing performances with different glucose concentrations. Based on EIS measurements and amperometric analysis, the Ag@ZnO-NR-based glucose sensor device exhibited a better sensing ability with excellent stability over time than pure ZnO NRs. The Ag@ZnO NR glucose sensor device recorded 2792 µA/(mM·cm2) sensitivity with a lowest detection limit of 1.29 µM.

6.
Nanomaterials (Basel) ; 11(8)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34443844

RESUMEN

One of the promising nonvolatile memories of the next generation is resistive random-access memory (ReRAM). It has vast benefits in comparison to other emerging nonvolatile memories. Among different materials, dielectric films have been extensively studied by the scientific research community as a nonvolatile switching material over several decades and have reported many advantages and downsides. However, less attention has been given to low-dimensional materials for resistive memory compared to dielectric films. Particularly, ß-Ga2O3 is one of the promising materials for high-power electronics and exhibits the resistive switching phenomenon. However, low-dimensional ß-Ga2O3 nanowires have not been explored in resistive memory applications, which hinders further developments. In this article, we studied the resistance switching phenomenon using controlled electron flow in the 1D nanowires and proposed possible resistive switching and electron conduction mechanisms. High-density ß-Ga2O3 1D-nanowires on Si (100) substrates were produced via the VLS growth technique using Au nanoparticles as a catalyst. Structural characteristics were analyzed via SEM, TEM, and XRD. Besides, EDS, CL, and XPS binding feature analyses confirmed the composition of individual elements, the possible intermediate absorption sites in the bandgap, and the bonding characteristics, along with the presence of various oxygen species, which is crucial for the ReRAM performances. The forming-free bipolar resistance switching of a single ß-Ga2O3 nanowire ReRAM device and performance are discussed in detail. The switching mechanism based on the formation and annihilation of conductive filaments through the oxygen vacancies is proposed, and the possible electron conduction mechanisms in HRS and LRS states are discussed.

7.
J Nanosci Nanotechnol ; 10(11): 7145-8, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21137884

RESUMEN

This study examines the intramolecular structures of individual fullerene molecules on a Si(111)-7 x 7 surface using an ultra-high vacuum scanning tunneling microscope. This study also discusses possible configurations of fullerene molecules with related orientations and electronic states of fullerene. A self-assembled layer of fullerene on a Si(111) surface is produced using special annealing treatments. The resulting electronic states and band gap energy can be estimated from I-V curves. Finally the field emission parameters, such as turn-on field and field enhancement factor beta, are determined using a traditional detecting system.

8.
RSC Adv ; 9(29): 16541-16553, 2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35516387

RESUMEN

In this paper, we report a wet chemical precipitation method used to synthesize pure and Cu-doped V2O5 nanorods with different doping concentrations (Cu x V2O5 where x = 3, 5 or 7 at%), followed by annealing at 600 °C and characterizations using several techniques. Indeed, a growth mechanism explaining the morphological evolution under the experimental conditions is also proposed. The XRD patterns revealed that all of the studied samples consist of a single V2O5 phase and are well crystallized with a preferential orientation towards the (200) direction. The presence of intrinsic defects and internal stresses in the lattice structure of the Cu x V2O5 samples has been substantiated by detailed analysis of the XRD. Apart from the doping level, there was an assessment of identical tiny peaks attributed to the formation of a secondary phase of CuO. SEM images confirmed the presence of agglomerated particles on the surface; the coverage increased with Cu doping level. XPS spectral analysis showed that Cu in the V5+ matrix exists mainly in the Cu2+ state on the surface. The appearance of satellite peaks in the Cu 2p spectra, however, provided definitive evidence for the presence of Cu2+ ions in these studied samples as well. Doping-induced PL quenching was observed due to the absorption of energy from defect emission in the V5+ lattice by Cu2+ ions. We have proposed a cost-effective, less complicated but effective way of synthesizing pure and doped samples in colloidal form, deposited by the nebulizer spray technique on p-Si to establish junction diodes with enhanced optoelectronic properties.

9.
J Nanosci Nanotechnol ; 8(9): 4377-81, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19049028

RESUMEN

This work develops a new process of growing well ordered ZnO nanorods in large scale on the Si(111) substrate. Nanosphere lithography (NSL) was adopted to produce a matrix in an extensive area. A pattern with a controlled amount of gold was formed through the nanosphere mask. The ZnO nanorods were then grown on a patterned Au/Si substrate through a metal catalytic vapor-liquid-solid (VLS) process. The structure and characteristics of ZnO nanorods were investigated by XRD, SEM and TEM. The hexagonal nanorods were dominated at (0002) direction with a lattice constant of approximately 5.03 A. The optoelectronical properties were studied by PL emission spectroscopy. A strong UV emission at 380 nm was observed. The band gap of the single ZnO nanorod was directly measured to be 3.36 eV using a conductive AFM. The superiority of patterned ZnO nanorods indicates their great potential in field emission display arrays.

10.
J Vis Exp ; (115)2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-27768037

RESUMEN

This paper reports an array-designed C84-embedded Si substrate fabricated using a controlled self-assembly method in an ultra-high vacuum chamber. The characteristics of the C84-embedded Si surface, such as atomic resolution topography, local electronic density of states, band gap energy, field emission properties, nanomechanical stiffness, and surface magnetism, were examined using a variety of surface analysis techniques under ultra, high vacuum (UHV) conditions as well as in an atmospheric system. Experimental results demonstrate the high uniformity of the C84-embedded Si surface fabricated using a controlled self-assembly nanotechnology mechanism, represents an important development in the application of field emission display (FED), optoelectronic device fabrication, MEMS cutting tools, and in efforts to find a suitable replacement for carbide semiconductors. Molecular dynamics (MD) method with semi-empirical potential can be used to study the nanoindentation of C84-embedded Si substrate. A detailed description for performing MD simulation is presented here. Details for a comprehensive study on mechanical analysis of MD simulation such as indentation force, Young's modulus, surface stiffness, atomic stress, and atomic strain are included. The atomic stress and von-Mises strain distributions of the indentation model can be calculated to monitor deformation mechanism with time evaluation in atomistic level.


Asunto(s)
Fulerenos/química , Microscopía de Sonda de Barrido/métodos , Silicio/química , Módulo de Elasticidad , Simulación de Dinámica Molecular , Nanotecnología/métodos
11.
J Nanosci Nanotechnol ; 4(8): 968-71, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15656187

RESUMEN

Vertical ZnO nanowires were successfully grown on epitaxial ZnO (002) buffer layer/Si (100) substrate. The nanowire growth process was controlled by surface morphology and orientation of the epitaxial ZnO buffer layer, which was deposited by radio-frequency (rf) sputtering. The copper catalyzed the vapor-liquid-solid growth of ZnO nanowires with diameter of approximately 30 nm and length of approximately 5.0 microm. The perfect wurtzite epitaxial structure (HCP structure) of the ZnO (0002) nanowires synthesized on ZnO (002) buffer layer/Si (100) substrate results in excellent optical characteristics such as strong UV emission at 380 nm with potential use in nano-optical and nano-electronic devices.


Asunto(s)
Cristalización/métodos , Nanotecnología/métodos , Nanotubos/química , Nanotubos/ultraestructura , Silicio/química , Óxido de Zinc/química , Adsorción , Instalación Eléctrica , Ensayo de Materiales , Conformación Molecular , Semiconductores , Propiedades de Superficie
12.
Electrophoresis ; 29(15): 3123-7, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18615410

RESUMEN

Creating a biocompatible carbon-nanotube polymer scaffold is an area that has a number of potential applications. Herein, a dielectrophoretic approach was pursued to integrate carbon nanotubes into a polymeric material for fabricating a nanoscale composite scaffold with increased and controllable mechanical strength. The adhesion force, which combines the surface energy of the sample and the interfacial energy between the tip and sample, was estimated to be 55.39 +/- 6.72 nN away from the center of the protrusions at a distance of 0.5 microm while being 24.01 +/- 4.45 nN at the center. The adhesion force for the center of the cavities was 42.47 +/- 6.91 and 88.21 +/- 15.05 nN at 0.5 microm away from the center. NIH 3T3 fibroblast cells were then utilized to test the cellular biocompatibility of this multiwalled carbon nanotubes (MWCNTs) film. Cells were cultured on the surface and then their attachment, spreading, and proliferation behaviors were observed. This nanotube-polymer scaffolding approach has a wide range of potential applications including in complex device fabrication as well as in developing biomimetic and tissue engineering scaffolds, and artificial organs.


Asunto(s)
Materiales Biocompatibles , Electroforesis por Microchip/métodos , Nanotubos de Carbono , Andamios del Tejido , Animales , Adhesión Celular , División Celular , Compuestos Epoxi , Mecánica , Ratones , Células 3T3 NIH/citología , Nanotubos de Carbono/ultraestructura , Polímeros , Sonicación , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA