Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Plant Cell ; 36(5): 2021-2040, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38309956

RESUMEN

Calcium-dependent protein kinases (CPKs) can decode and translate intracellular calcium signals to induce plant immunity. Mutation of the exocyst subunit gene EXO70B1 causes autoimmunity that depends on CPK5 and the Toll/interleukin-1 receptor (TIR) domain resistance protein TIR-NBS2 (TN2), where direct interaction with TN2 stabilizes CPK5 kinase activity. However, how the CPK5-TN2 interaction initiates downstream immune responses remains unclear. Here, we show that, besides CPK5 activity, the physical interaction between CPK5 and functional TN2 triggers immune activation in exo70B1 and may represent reciprocal regulation between CPK5 and the TIR domain functions of TN2 in Arabidopsis (Arabidopsis thaliana). Moreover, we detected differential phosphorylation of the calmodulin-binding transcription activator 3 (CAMTA3) in the cpk5 background. CPK5 directly phosphorylates CAMTA3 at S964, contributing to its destabilization. The gain-of-function CAMTA3A855V variant that resists CPK5-induced degradation rescues immunity activated through CPK5 overexpression or exo70B1 mutation. Thus, CPK5-mediated immunity is executed through CAMTA3 repressor degradation via phosphorylation-induced and/or calmodulin-regulated processes. Conversely, autoimmunity in camta3 also partially requires functional CPK5. While the TIR domain activity of TN2 remains to be tested, our study uncovers a TN2-CPK5-CAMTA3 signaling module for exo70B1-mediated autoimmunity, highlighting the direct embedding of a calcium-sensing decoder element within resistance signalosomes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mutación , Inmunidad de la Planta , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autoinmunidad/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Fosforilación , Inmunidad de la Planta/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Plant Cell ; 33(2): 404-419, 2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33630076

RESUMEN

During the immune response, activation of the secretory pathway is key to mounting an effective response, while gauging its output is important to maintain cellular homeostasis. The Exo70 subunit of the exocyst functions as a spatiotemporal regulator by mediating numerous interactions with proteins and lipids. However, a molecular understanding of the exocyst regulation remains challenging. We show that, in Arabidopsis thaliana, Exo70B2 behaves as a bona fide exocyst subunit. Conversely, treatment with the salicylic acid (SA) defence hormone analog benzothiadiazole (BTH), or the immunogenic peptide flg22, induced Exo70B2 transport into the vacuole. We reveal that Exo70B2 interacts with AUTOPHAGY-RELATED PROTEIN 8 (ATG8) via two ATG8-interacting motives (AIMs) and its transport into the vacuole is dependent on autophagy. In line with its role in immunity, we discovered that Exo70B2 interacted with and was phosphorylated by the kinase MPK3. Mimicking phosphorylation had a dual impact on Exo70B2: first, by inhibiting localization at sites of active secretion, and second, it increased the interaction with ATG8. Phosphonull variants displayed higher effector-triggered immunity (ETI) and were hypersensitive to BTH, which induce secretion and autophagy. Our results suggest a molecular mechanism by which phosphorylation diverts Exo70B2 from the secretory into the autophagy pathway for its degradation, to dampen secretory activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Autofagia/inmunología , Subunidades de Proteína/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/microbiología , Proteínas de Arabidopsis/química , Autofagia/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Biológicos , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/fisiología , Transducción de Señal/efectos de los fármacos , Tiadiazoles/farmacología , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/química , Virulencia/efectos de los fármacos , Red trans-Golgi/efectos de los fármacos , Red trans-Golgi/metabolismo
3.
BMC Biol ; 21(1): 249, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37940940

RESUMEN

BACKGROUND: Shifts in dynamic equilibria of the abundance of cellular molecules in plant-pathogen interactions need further exploration. We induced PTI in optimally growing Arabidopsis thaliana seedlings for 16 h, returning them to growth conditions for another 16 h. METHODS: Turn-over and abundance of 99 flg22 responding proteins were measured chronologically using a stable heavy nitrogen isotope partial labeling strategy and targeted liquid chromatography coupled to mass spectrometry (PRM LC-MS). These experiments were complemented by measurements of mRNA and phytohormone levels. RESULTS: Changes in synthesis and degradation rate constants (Ks and Kd) regulated tryptophane and glucosinolate, IAA transport, and photosynthesis-associated protein (PAP) homeostasis in growth/PTI transitions independently of mRNA levels. Ks values increased after elicitation while protein and mRNA levels became uncorrelated. mRNA returned to pre-elicitation levels, yet protein abundance remained at PTI levels even 16 h after media exchange, indicating protein levels were robust and unresponsive to transition back to growth. The abundance of 23 PAPs including FERREDOXIN-NADP( +)-OXIDOREDUCTASE (FNR1) decreased 16 h after PAMP exposure, their depletion was nearly abolished in the myc234 mutant. FNR1 Kd increased as mRNA levels decreased early in PTI, its Ks decreased in prolonged PTI. FNR1 Kd was lower in myc234, mRNA levels decreased as in wild type. CONCLUSIONS: Protein Kd and Ks values change in response to flg22 exposure and constitute an additional layer of protein abundance regulation in growth defense transitions next to changes in mRNA levels. Our results suggest photosystem remodeling in PTI to direct electron flow away from the photosynthetic carbon reaction towards ROS production as an active defense mechanism controlled post-transcriptionally and by MYC2 and homologs. Target proteins accumulated later and PAP and auxin/IAA depletion was repressed in myc234 indicating a positive effect of the transcription factors in the establishment of PTI.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Triptófano/genética , Triptófano/metabolismo , Triptófano/farmacología , Fotosíntesis , ARN Mensajero/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Molecules ; 27(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36296471

RESUMEN

Capsaicin, produced by diverse Capsicum species, is among the world's most popular spices and of considerable pharmaceutical relevance. Although the capsaicinoid biosynthetic pathway has been investigated for decades, several biosynthetic steps have remained partly hypothetical. Genetic evidence suggested that the decisive capsaicin synthase is encoded by the Pun1 locus. Yet, the genetic evidence of the Pun1 locus was never corroborated by functionally active capsaicin synthase that presumably catalyzes an amide bond formation between trans 8-methyl-6-nonenoyl-CoA derived from branched-chain amino acid biosynthesis and vanilloylamine derived from the phenylpropanoid pathway. In this report, we demonstrate the enzymatic activity of a recombinant capsaicin synthase encoded by Pun1, functionally expressed in Escherichia coli, and provide information on its substrate specificity and catalytic properties. Recombinant capsaicin synthase is specific for selected aliphatic CoA-esters and highly specific for vanilloylamine. Partly purified from E. coli, the recombinant active enzyme is a monomeric protein of 51 kDa that is independent of additional co-factors or associated proteins, as previously proposed. These data can now be used to design capsaicin synthase variants with different properties and alternative substrate preferences.


Asunto(s)
Capsaicina , Proteínas de Escherichia coli , Capsaicina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoácidos de Cadena Ramificada , Preparaciones Farmacéuticas , Coenzima A , Proteínas de la Membrana Bacteriana Externa
5.
Plant J ; 101(5): 1023-1039, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31628867

RESUMEN

Mitogen-activated protein kinase (MAPK) cascades are key signalling modules of plant defence responses to pathogen-associated molecular patterns [PAMPs; e.g. the bacterial peptide flagellin (flg22)]. Tandem zinc finger protein 9 (TZF9) is a RNA-binding protein that is phosphorylated by two PAMP-responsive MAPKs, MPK3 and MPK6. We mapped the major phosphosites in TZF9 and showed their importance for controlling in vitro RNA-binding activity, in vivo flg22-induced rapid disappearance of TZF9-labelled processing body-like structures and TZF9 protein turnover. Microarray analysis showed a strong discordance between transcriptome (total mRNA) and translatome (polysome-associated mRNA) in the tzf9 mutant, with more mRNAs associated with ribosomes in the absence of TZF9. This suggests that TZF9 may sequester and inhibit the translation of subsets of mRNAs. Fittingly, TZF9 physically interacts with poly(A)-binding protein 2 (PAB2), a hallmark constituent of stress granules - sites for stress-induced translational stalling/arrest. TZF9 even promotes the assembly of stress granules in the absence of stress. Hence, MAPKs may control defence gene expression post-transcriptionally through release from translation arrest within TZF9-PAB2-containing RNA granules or by perturbing the function of PAB2 in translation control (e.g. in the mRNA closed-loop model of translation).


Asunto(s)
Arabidopsis/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Arabidopsis/fisiología , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fosforilación , Enfermedades de las Plantas/microbiología , Transporte de Proteínas , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética
6.
Plant J ; 104(2): 546-558, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32745315

RESUMEN

Casein kinase 2 is a ubiquitous protein kinase that has puzzled researchers for several decades because of its pleiotropic activity. Here, we set out to identify the in vivo targets of plastid casein kinase 2 (pCK2) in Arabidopsis thaliana. Survey phosphoproteome analyses were combined with targeted analyses with wild-type and pck2 knockdown mutants to identify potential pCK2 targets by their decreased phosphorylation state in the mutant. To validate potential substrates, we complemented the pck2 knockdown line with tandem affinity tag (TAP)-tagged pCK2 and found it to restore growth parameters, as well as many, but not all, putative pCK2-dependent phosphorylation events. We further performed a targeted analysis at the end-of-night to increase the specificity of target protein identification. This analysis confirmed light-independent phosphorylation of several pCK2 target proteins. Based on the aforementioned data, we define a set of in vivo pCK2-targets that span different chloroplast functions, such as metabolism, transcription, translation and photosynthesis. The pleiotropy of pCK2 functions is also manifested by altered state transition kinetics during short-term acclimation and significant alterations in the mutant metabolism, supporting its function in photosynthetic regulation. Thus, our data expand our understanding on chloroplast phosphorylation networks and provide insights into kinase networks in the regulation of chloroplast functions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quinasa de la Caseína II/metabolismo , Plastidios/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Quinasa de la Caseína II/genética , Proteínas de Cloroplastos/metabolismo , Oscuridad , Técnicas de Silenciamiento del Gen , Luz , Mutación , Fosforilación , Mapas de Interacción de Proteínas , Proteómica/métodos
7.
Plant Physiol ; 184(2): 1056-1071, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32769161

RESUMEN

The Arabidopsis (Arabidopsis thaliana) calmodulin-binding transcription activator3 (CAMTA3) is a repressor of immunity-related genes but an activator of cold-induced or general stress-responsive genes in plants. Post-transcriptional or posttranslational mechanisms have been proposed to control CAMTA3 functions in different stress responses. Here, we show that treatment with the bacterial flg22 elicitor induces CAMTA3 phosphorylation, which is accompanied by its destabilization and nuclear export. Two flg22-responsive mitogen-activated protein kinases (MAPKs), MPK3 and MPK6, directly phosphorylate CAMTA3, with the phospho-sites contributing to CAMTA3 degradation and suppression of downstream target gene expression. However, the flg22-induced nuclear export and phospho-mobility shift can still be observed for the CAMTA3 phospho-null variant of the MAPK-modified sites, suggesting additional flg22-responsive kinases might be involved. Taken together, we propose that flg22-induced CAMTA3 depletion facilitates de-repression of downstream defense target genes, which involves phosphorylation, increased protein turnover, and nucleo-cytoplasmic trafficking.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Calmodulina/metabolismo , Fosforilación/fisiología , Factores de Transcripción/metabolismo , Calmodulina/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Fosforilación/genética , Factores de Transcripción/genética
8.
Plant J ; 98(2): 370-384, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30589143

RESUMEN

Mass spectrometry has been instrumental in enabling the study of molecular signaling on a cellular scale by way of site-specific quantification of protein post-translational modifications, in particular phosphorylation. Here we describe an updated tandem metal oxide affinity chromatography (MOAC) combined phosphoprotein/phosphopeptide enrichment strategy, a scalable phosphoproteomics approach that allows rapid identification of thousands of phosphopeptides in plant materials. We implemented modifications to several steps of the original tandem MOAC procedure to increase the amount of quantified phosphopeptides and hence site-specific phosphorylation of proteins in a sample beginning with the less amounts of tissue and a substantially smaller amount of extracted protein. We applied this technology to generate time-resolved maps of boron signaling in Arabidopsis roots. We show that the successive enrichment of phosphoproteins in a first and phosphopeptide extraction in a second step using our optimized procedure strongly enriched the root phosphoproteome. Our results reveal that boron deficiency affects over 20% of the measured root phosphoproteome and that many phosphorylation sites with known biological function, and an even larger number of previously undescribed sites, are modified during the time course of boron deficiency. We identify transcription factors as key regulators of hormone signaling pathways that modulate gene expression in boron deprived plants. Furthermore, our phosphorylation kinetics data demonstrate that mitogen-activated protein kinase (MAPK) cascades mediate polarized transport of boron in Arabidopsis roots. Taken together, we establish and validate a robust approach for proteome-wide phosphorylation analysis in plant biology research.


Asunto(s)
Boro/química , Cromatografía de Afinidad/métodos , Fosfopéptidos/aislamiento & purificación , Fosfoproteínas/aislamiento & purificación , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/aislamiento & purificación , Óxidos , Fosfopéptidos/química , Fosfoproteínas/química , Fosforilación , Raíces de Plantas , Procesamiento Proteico-Postraduccional , Proteoma , Transducción de Señal
9.
Plant Cell ; 29(5): 960-983, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28408661

RESUMEN

Glandular trichomes are metabolic cell factories with the capacity to produce large quantities of secondary metabolites. Little is known about the connection between central carbon metabolism and metabolic productivity for secondary metabolites in glandular trichomes. To address this gap in our knowledge, we performed comparative metabolomics, transcriptomics, proteomics, and 13C-labeling of type VI glandular trichomes and leaves from a cultivated (Solanum lycopersicum LA4024) and a wild (Solanum habrochaites LA1777) tomato accession. Specific features of glandular trichomes that drive the formation of secondary metabolites could be identified. Tomato type VI trichomes are photosynthetic but acquire their carbon essentially from leaf sucrose. The energy and reducing power from photosynthesis are used to support the biosynthesis of secondary metabolites, while the comparatively reduced Calvin-Benson-Bassham cycle activity may be involved in recycling metabolic CO2 Glandular trichomes cope with oxidative stress by producing high levels of polyunsaturated fatty acids, oxylipins, and glutathione. Finally, distinct mechanisms are present in glandular trichomes to increase the supply of precursors for the isoprenoid pathways. Particularly, the citrate-malate shuttle supplies cytosolic acetyl-CoA and plastidic glycolysis and malic enzyme support the formation of plastidic pyruvate. A model is proposed on how glandular trichomes achieve high metabolic productivity.


Asunto(s)
Solanum lycopersicum/metabolismo , Tricomas/metabolismo , Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Solanum lycopersicum/genética , Fotosíntesis/genética , Fotosíntesis/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Tricomas/genética
10.
Plant Cell ; 29(4): 726-745, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28280093

RESUMEN

Crosstalk between posttranslational modifications, such as ubiquitination and phosphorylation, play key roles in controlling the duration and intensity of signaling events to ensure cellular homeostasis. However, the molecular mechanisms underlying the regulation of negative feedback loops remain poorly understood. Here, we uncover a pathway in Arabidopsis thaliana by which a negative feedback loop involving the E3 ubiquitin ligase PUB22 that dampens the immune response is triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3), best known for its function in the activation of signaling. PUB22's stability is controlled by MPK3-mediated phosphorylation of residues localized in and adjacent to the E2 docking domain. We show that phosphorylation is critical for stabilization by inhibiting PUB22 oligomerization and, thus, autoubiquitination. The activity switch allows PUB22 to dampen the immune response. This regulatory mechanism also suggests that autoubiquitination, which is inherent to most single unit E3s in vitro, can function as a self-regulatory mechanism in vivo.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Inmunidad de la Planta/genética , Unión Proteica , Transducción de Señal/genética , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética , Ubiquitinación/fisiología
11.
Plant Cell ; 29(12): 3030-3050, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29167320

RESUMEN

An apical plasma membrane domain enriched in the regulatory phospholipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is critical for polar tip growth of pollen tubes. How the biosynthesis of PtdIns(4,5)P2 by phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases) is controlled by upstream signaling is currently unknown. The pollen-expressed PI4P 5-kinase PIP5K6 is required for clathrin-mediated endocytosis and polar tip growth in pollen tubes. Here, we identify PIP5K6 as a target of the pollen-expressed mitogen-activated protein kinase MPK6 and characterize the regulatory effects. Based on an untargeted mass spectrometry approach, phosphorylation of purified recombinant PIP5K6 by pollen tube extracts could be attributed to MPK6. Recombinant MPK6 phosphorylated residues T590 and T597 in the variable insert of the catalytic domain of PIP5K6, and this modification inhibited PIP5K6 activity in vitro. PIP5K6 interacted with MPK6 in yeast two-hybrid tests, immuno-pull-down assays, and by bimolecular fluorescence complementation at the apical plasma membrane of pollen tubes. In vivo, MPK6 expression resulted in reduced plasma membrane association of a fluorescent PtdIns(4,5)P2 reporter and decreased endocytosis without impairing membrane association of PIP5K6. Effects of PIP5K6 expression on pollen tube growth and cell morphology were attenuated by coexpression of MPK6 in a phosphosite-dependent manner. Our data indicate that MPK6 controls PtdIns(4,5)P2 production and membrane trafficking in pollen tubes, possibly contributing to directional growth.


Asunto(s)
Arabidopsis/enzimología , Membrana Celular/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Nicotiana/enzimología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Tubo Polínico/enzimología , Tubo Polínico/crecimiento & desarrollo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/citología , Biocatálisis , Endocitosis , Colorantes Fluorescentes/metabolismo , Proteínas Quinasas Activadas por Mitógenos/química , Modelos Biológicos , Fosforilación , Fosfotreonina/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Tubo Polínico/citología , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Recombinantes , Nicotiana/citología
12.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271881

RESUMEN

For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.


Asunto(s)
Proteínas de Plantas/metabolismo , Proteoma , Proteómica , Semillas/metabolismo , Cromatografía Liquida , Biología Computacional/métodos , Humanos , Espectrometría de Masas , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Flujo de Trabajo
13.
Int J Mol Sci ; 20(9)2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31083443

RESUMEN

Type 2 diabetes mellitus (T2DM) is one of the most widely spread metabolic diseases. Because of its asymptomatic onset and slow development, early diagnosis and adequate glycaemic control are the prerequisites for successful T2DM therapy. In this context, individual amino acid residues might be sensitive indicators of alterations in blood glycation levels. Moreover, due to a large variation in the half-life times of plasma proteins, a generalized biomarker, based on multiple glycation sites, might provide comprehensive control of the glycemic status across any desired time span. Therefore, here, we address the patterns of glycation sites in highly-abundant blood plasma proteins of T2DM patients and corresponding age- and gender-matched controls by comprehensive liquid chromatography-mass spectrometry (LC-MS). The analysis revealed 42 lysyl residues, significantly upregulated under hyperglycemic conditions. Thereby, for 32 glycation sites, biomarker behavior was demonstrated here for the first time. The differentially glycated lysines represented nine plasma proteins with half-lives from 2 to 21 days, giving access to an integrated biomarker based on multiple protein-specific Amadori peptides. The validation of this biomarker relied on linear discriminant analysis (LDA) with random sub-sampling of the training set and leave-one-out cross-validation (LOOCV), which resulted in an accuracy, specificity, and sensitivity of 92%, 100%, and 85%, respectively.


Asunto(s)
Biomarcadores/sangre , Proteínas Sanguíneas/análisis , Diabetes Mellitus Tipo 2/sangre , Secuencia de Aminoácidos , Análisis Discriminante , Glicosilación , Semivida , Humanos , Péptidos/química , Péptidos/metabolismo , Análisis de Componente Principal , Tripsina/metabolismo
14.
Plant J ; 90(6): 1176-1186, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28295753

RESUMEN

The thylakoid-associated kinases STN7 and STN8 are involved in short- and long-term acclimation of photosynthetic electron transport to changing light conditions. Here we report the identification of STN7/STN8 in vivo targets that connect photosynthetic electron transport with metabolism and gene expression. Comparative phosphoproteomics with the stn7 and stn8 single and double mutants identified two proteases, one RNA-binding protein, a ribosomal protein, the large subunit of Rubisco and a ferredoxin-NADP reductase as targets for the thylakoid-associated kinases. Phosphorylation of three of the above proteins can be partially complemented by STN8 in the stn7 single mutant, albeit at lower efficiency, while phosphorylation of the remaining three proteins strictly depends on STN7. The properties of the STN7-dependent phosphorylation site are similar to those of phosphorylated light-harvesting complex proteins entailing glycine or another small hydrophobic amino acid in the -1 position. Our analysis uncovers the STN7/STN8 kinases as mediators between photosynthetic electron transport, its immediate downstream sinks and long-term adaptation processes affecting metabolite accumulation and gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Transporte de Electrón/fisiología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte de Electrón/genética , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Fosforilación/genética , Fosforilación/fisiología , Fotosíntesis/genética , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética
15.
New Phytol ; 217(4): 1749-1763, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29194629

RESUMEN

Ubiquitination is mediated by an enzymatic cascade that results in the modification of substrate proteins, redefining their fate. This post-translational modification is involved in most cellular processes, yet its analysis faces manifold obstacles due to its complex and ubiquitous nature. Reconstitution of the ubiquitination cascade in bacterial systems circumvents several of these problems and was shown to faithfully recapitulate the process. Here, we present UbiGate - a synthetic biology toolbox, together with an inducible bacterial expression system - to enable the straightforward reconstitution of the ubiquitination cascades of different organisms in Escherichia coli by 'Golden Gate' cloning. This inclusive toolbox uses a hierarchical modular cloning system to assemble complex DNA molecules encoding the multiple genetic elements of the ubiquitination cascade in a predefined order, to generate polycistronic operons for expression. We demonstrate the efficiency of UbiGate in generating a variety of expression elements to reconstitute autoubiquitination by different E3 ligases and the modification of their substrates, as well as its usefulness for dissecting the process in a time- and cost-effective manner.


Asunto(s)
Biología Sintética/métodos , Ubiquitinación , Arabidopsis/genética , Genes de Plantas , Vectores Genéticos/metabolismo , Operón/genética , Transducción de Señal , Especificidad por Sustrato , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/aislamiento & purificación
16.
Int J Mol Sci ; 19(12)2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30558315

RESUMEN

Due to low culturing costs and high seed protein contents, legumes represent the main global source of food protein. Pea (Pisum sativum L.) is one of the major legume crops, impacting both animal feed and human nutrition. Therefore, the quality of pea seeds needs to be ensured in the context of sustainable crop production and nutritional efficiency. Apparently, changes in seed protein patterns might directly affect both of these aspects. Thus, here, we address the pea seed proteome in detail and provide, to the best of our knowledge, the most comprehensive annotation of the functions and intracellular localization of pea seed proteins. To address possible intercultivar differences, we compared seed proteomes of yellow- and green-seeded pea cultivars in a comprehensive case study. The analysis revealed totally 1938 and 1989 nonredundant proteins, respectively. Only 35 and 44 proteins, respectively, could be additionally identified after protamine sulfate precipitation (PSP), potentially indicating the high efficiency of our experimental workflow. Totally 981 protein groups were assigned to 34 functional classes, which were to a large extent differentially represented in yellow and green seeds. Closer analysis of these differences by processing of the data in KEGG and String databases revealed their possible relation to a higher metabolic status and reduced longevity of green seeds.


Asunto(s)
Clorofila/análisis , Pisum sativum/química , Proteínas de Plantas/análisis , Semillas/química , Secuencia de Aminoácidos , Precipitación Química , Pisum sativum/embriología , Proteoma/análisis , Proteómica , Espectrometría de Masas en Tándem
17.
J Proteome Res ; 16(4): 1410-1424, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28217993

RESUMEN

We evaluated the state of label-free discovery proteomics focusing especially on technological contributions and contributions of naturally occurring differences in protein abundance to the intersample variability in protein abundance estimates in this highly peptide-centric technology. First, the performance of popular quantitative proteomics software, Proteome Discoverer, Scaffold, MaxQuant, and Progenesis QIP, was benchmarked using their default parameters and some modified settings. Beyond this, the intersample variability in protein abundance estimates was decomposed into variability introduced by the entire technology itself and variable protein amounts inherent to individual plants of the Arabidopsis thaliana Col-0 accession. The technical component was considerably higher than the biological intersample variability, suggesting an effect on the degree and validity of reported biological changes in protein abundance. Surprisingly, the biological variability, protein abundance estimates, and protein fold changes were recorded differently by the software used to quantify the proteins, warranting caution in the comparison of discovery proteomics results. As expected, ∼99% of the proteome was invariant in the isogenic plants in the absence of environmental factors; however, few proteins showed substantial quantitative variability. This naturally occurring variation between individual organisms can have an impact on the causality of reported protein fold changes.


Asunto(s)
Proteínas de Arabidopsis/genética , Péptidos/genética , Proteoma/genética , Proteómica/métodos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Regulación de la Expresión Génica de las Plantas , Péptidos/química , Pliegue de Proteína , Proteoma/química , Programas Informáticos , Espectrometría de Masas en Tándem
18.
BMC Plant Biol ; 16: 106, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27121119

RESUMEN

BACKGROUND: Plant adaptation to limited phosphate availability comprises a wide range of responses to conserve and remobilize internal phosphate sources and to enhance phosphate acquisition. Vigorous restructuring of root system architecture provides a developmental strategy for topsoil exploration and phosphate scavenging. Changes in external phosphate availability are locally sensed at root tips and adjust root growth by modulating cell expansion and cell division. The functionally interacting Arabidopsis genes, LOW PHOSPHATE RESPONSE 1 and 2 (LPR1/LPR2) and PHOSPHATE DEFICIENCY RESPONSE 2 (PDR2), are key components of root phosphate sensing. We recently demonstrated that the LOW PHOSPHATE RESPONSE 1 - PHOSPHATE DEFICIENCY RESPONSE 2 (LPR1-PDR2) module mediates apoplastic deposition of ferric iron (Fe(3+)) in the growing root tip during phosphate limitation. Iron deposition coincides with sites of reactive oxygen species generation and triggers cell wall thickening and callose accumulation, which interfere with cell-to-cell communication and inhibit root growth. RESULTS: We took advantage of the opposite phosphate-conditional root phenotype of the phosphate deficiency response 2 mutant (hypersensitive) and low phosphate response 1 and 2 double mutant (insensitive) to investigate the phosphate dependent regulation of gene and protein expression in roots using genome-wide transcriptome and proteome analysis. We observed an overrepresentation of genes and proteins that are involved in the regulation of iron homeostasis, cell wall remodeling and reactive oxygen species formation, and we highlight a number of candidate genes with a potential function in root adaptation to limited phosphate availability. Our experiments reveal that FERRIC REDUCTASE DEFECTIVE 3 mediated, apoplastic iron redistribution, but not intracellular iron uptake and iron storage, triggers phosphate-dependent root growth modulation. We further highlight expressional changes of several cell wall-modifying enzymes and provide evidence for adjustment of the pectin network at sites of iron accumulation in the root. CONCLUSION: Our study reveals new aspects of the elaborate interplay between phosphate starvation responses and changes in iron homeostasis. The results emphasize the importance of apoplastic iron redistribution to mediate phosphate-dependent root growth adjustment and suggest an important role for citrate in phosphate-dependent apoplastic iron transport. We further demonstrate that root growth modulation correlates with an altered expression of cell wall modifying enzymes and changes in the pectin network of the phosphate-deprived root tip, supporting the hypothesis that pectins are involved in iron binding and/or phosphate mobilization.


Asunto(s)
Pared Celular/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Raíces de Plantas/genética , Adaptación Fisiológica/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Pared Celular/metabolismo , Cromatografía Liquida , Hierro/metabolismo , Espectrometría de Masas , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Pectinas/metabolismo , Raíces de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo , Suelo/química
19.
Plant Physiol ; 169(4): 3021-33, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26471895

RESUMEN

Salinity and oxidative stress are major factors affecting and limiting the productivity of agricultural crops. The molecular and biochemical processes governing the plant response to abiotic stress have often been researched in a reductionist manner. Here, we report a systemic approach combining metabolic labeling and phosphoproteomics to capture early signaling events with quantitative metabolome analysis and enzyme activity assays to determine the effects of salt and oxidative stress on plant physiology. K(+) and Na(+) transporters showed coordinated changes in their phosphorylation pattern, indicating the importance of dynamic ion homeostasis for adaptation to salt stress. Unique phosphorylation sites were found for Arabidopsis (Arabidopsis thaliana) SNF1 kinase homolog10 and 11, indicating their central roles in the stress-regulated responses. Seven Sucrose Non-fermenting1-Related Protein Kinase2 kinases showed varying levels of phosphorylation at multiple serine/threonine residues in their kinase domain upon stress, showing temporally distinct modulation of the various isoforms. Salinity and oxidative stress also lead to changes in protein phosphorylation of proteins central to photosynthesis, in particular the kinase State Transition Protein7 required for state transition and light-harvesting II complex proteins. Furthermore, stress-induced changes of the phosphorylation of enzymes of central metabolism were observed. The phosphorylation patterns of these proteins were concurrent with changes in enzyme activity. This was reflected by altered levels of metabolites, such as the sugars sucrose and fructose, glycolysis intermediates, and amino acids. Together, our study provides evidence for a link between early signaling in the salt and oxidative stress response that regulates the state transition of photosynthesis and the rearrangement of primary metabolism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metaboloma , Estrés Oxidativo , Fotosíntesis , Proteoma/metabolismo , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Células Cultivadas , Cromatografía Liquida , Metabolómica/métodos , Modelos Biológicos , Fosfopéptidos/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Proteómica/métodos , Salinidad , Transducción de Señal/efectos de los fármacos , Cloruro de Sodio/farmacología , Estrés Fisiológico , Espectrometría de Masas en Tándem
20.
Mol Cell Proteomics ; 12(2): 369-80, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23172892

RESUMEN

Mitogen-activated protein kinase (MPK) cascades are important for eukaryotic signal transduction. They convert extracellular stimuli (e.g. some hormones, growth factors, cytokines, microbe- or damage-associated molecular patterns) into intracellular responses while at the same time amplifying the transmitting signal. By doing so, they ensure proper performance, and eventually survival, of a given organism, for example in times of stress. MPK cascades function via reversible phosphorylation of cascade components MEKKs, MEKs, and MPKs. In plants the identity of most MPK substrates remained elusive until now. Here, we provide a robust and powerful approach to identify and quantify, with high selectivity, site-specific phosphorylation of MPK substrate candidates in the model plant Arabidopsis thaliana. Our approach represents a two-step chromatography combining phosphoprotein enrichment using Al(OH)(3)-based metal oxide affinity chromatography, tryptic digest of enriched phosphoproteins, and TiO(2)-based metal oxide affinity chromatography to enrich phosphopeptides from complex protein samples. When applied to transgenic conditional gain-of-function Arabidopsis plants supporting in planta activation of MPKs, the approach allows direct measurement and quantification ex vivo of site-specific phosphorylation of several reported and many yet unknown putative MPK substrates in just a single experiment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Hidróxido de Aluminio , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cromatografía de Afinidad/métodos , Cromatografía Liquida , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Fosfopéptidos/análisis , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilación , Mapeo de Interacción de Proteínas , Proteoma/química , Proteoma/genética , Transducción de Señal , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA