Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Metabolomics ; 20(1): 16, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267770

RESUMEN

INTRODUCTION: Meta-analyses across diverse independent studies provide improved confidence in results. However, within the context of metabolomic epidemiology, meta-analysis investigations are complicated by differences in study design, data acquisition, and other factors that may impact reproducibility. OBJECTIVE: The objective of this study was to identify maternal blood metabolites during pregnancy (> 24 gestational weeks) related to offspring body mass index (BMI) at age two years through a meta-analysis framework. METHODS: We used adjusted linear regression summary statistics from three cohorts (total N = 1012 mother-child pairs) participating in the NIH Environmental influences on Child Health Outcomes (ECHO) Program. We applied a random-effects meta-analysis framework to regression results and adjusted by false discovery rate (FDR) using the Benjamini-Hochberg procedure. RESULTS: Only 20 metabolites were detected in all three cohorts, with an additional 127 metabolites detected in two of three cohorts. Of these 147, 6 maternal metabolites were nominally associated (P < 0.05) with offspring BMI z-scores at age 2 years in a meta-analytic framework including at least two studies: arabinose (Coefmeta = 0.40 [95% CI 0.10,0.70], Pmeta = 9.7 × 10-3), guanidinoacetate (Coefmeta = - 0.28 [- 0.54, - 0.02], Pmeta = 0.033), 3-ureidopropionate (Coefmeta = 0.22 [0.017,0.41], Pmeta = 0.033), 1-methylhistidine (Coefmeta = - 0.18 [- 0.33, - 0.04], Pmeta = 0.011), serine (Coefmeta = - 0.18 [- 0.36, - 0.01], Pmeta = 0.034), and lysine (Coefmeta = - 0.16 [- 0.32, - 0.01], Pmeta = 0.044). No associations were robust to multiple testing correction. CONCLUSIONS: Despite including three cohorts with large sample sizes (N > 100), we failed to identify significant metabolite associations after FDR correction. Our investigation demonstrates difficulties in applying epidemiological meta-analysis to clinical metabolomics, emphasizes challenges to reproducibility, and highlights the need for standardized best practices in metabolomic epidemiology.


Asunto(s)
Lisina , Metabolómica , Niño , Femenino , Embarazo , Humanos , Preescolar , Índice de Masa Corporal , Reproducibilidad de los Resultados , Modelos Lineales
2.
Pediatr Res ; 96(1): 253-260, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38509226

RESUMEN

BACKGROUND: Gut-derived metabolites, products of microbial and host co-metabolism, may inform mechanisms underlying children's neurodevelopment. We investigated whether infant fecal metabolites were related to toddler social behavior. METHODS: Stool samples collected from 6-week-olds (n = 86) and 1-year-olds (n = 209) in the New Hampshire Birth Cohort Study (NHBCS) were analyzed using nuclear magnetic resonance spectroscopy metabolomics. Autism-related behavior in 3-year-olds was assessed by caregivers using the Social Responsiveness Scale (SRS-2). To assess the association between metabolites and SRS-2 scores, we used a traditional single-metabolite approach, quantitative metabolite set enrichment (QEA), and self-organizing maps (SOMs). RESULTS: Using a single-metabolite approach and QEA, no individual fecal metabolite or metabolite set at either age was associated with SRS-2 scores. Using the SOM method, fecal metabolites of six-week-olds organized into four profiles, which were unrelated to SRS-2 scores. In 1-year-olds, one of twelve fecal metabolite profiles was associated with fewer autism-related behaviors, with SRS-2 scores 3.4 (95%CI: -7, 0.2) points lower than the referent group. This profile had higher concentrations of lactate and lower concentrations of short chain fatty acids than the reference. CONCLUSIONS: We uncovered metabolic profiles in infant stool associated with subsequent social behavior, highlighting one potential mechanism by which gut bacteria may influence neurobehavior. IMPACT: Differences in host and microbial metabolism may explain variability in neurobehavioral phenotypes, but prior studies do not have consistent results. We applied three statistical techniques to explore fecal metabolite differences related to social behavior, including self-organizing maps (SOMs), a novel machine learning algorithm. A 1-year-old fecal metabolite pattern characterized by high lactate and low short-chain fatty acid concentrations, identified using SOMs, was associated with social behavior less indicative of autism spectrum disorder. Our findings suggest that social behavior may be related to metabolite profiles and that future studies may uncover novel findings by applying the SOM algorithm.


Asunto(s)
Heces , Metabolómica , Conducta Social , Humanos , Heces/química , Lactante , Masculino , Femenino , Preescolar , Desarrollo Infantil , Microbioma Gastrointestinal , Espectroscopía de Resonancia Magnética , Cohorte de Nacimiento , Metaboloma
3.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33637652

RESUMEN

We examine how operational changes in customer flows in retail stores affect the rate of COVID-19 transmission. We combine a model of customer movement with two models of disease transmission: direct exposure when two customers are in close proximity and wake exposure when one customer is in the airflow behind another customer. We find that the effectiveness of some operational interventions is sensitive to the primary mode of transmission. Restricting customer flow to one-way movement is highly effective if direct exposure is the dominant mode of transmission. In particular, the rate of direct transmission under full compliance with one-way movement is less than one-third the rate under two-way movement. Directing customers to follow one-way flow, however, is not effective if wake exposure dominates. We find that two other interventions-reducing the speed variance of customers and throughput control-can be effective whether direct or wake transmission is dominant. We also examine the trade-off between customer throughput and the risk of infection to customers, and we show how the optimal throughput rate drops rapidly as the population prevalence rises.


Asunto(s)
COVID-19/prevención & control , Comercio , Comportamiento del Consumidor , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/transmisión , Humanos
4.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338815

RESUMEN

MicroRNAs (miRNA) in extracellular vesicles and particles (EVPs) in maternal circulation during pregnancy and in human milk postpartum are hypothesized to facilitate maternal-offspring communication via epigenetic regulation. However, factors influencing maternal EVP miRNA profiles during these two critical developmental windows remain largely unknown. In a pilot study of 54 mother-child dyads in the New Hampshire Birth Cohort Study, we profiled 798 EVP miRNAs, using the NanoString nCounter platform, in paired maternal second-trimester plasma and mature (6-week) milk samples. In adjusted models, total EVP miRNA counts were lower for plasma samples collected in the afternoon compared with the morning (p = 0.024). Infant age at sample collection was inversely associated with total miRNA counts in human milk EVPs (p = 0.040). Milk EVP miRNA counts were also lower among participants who were multiparous after delivery (p = 0.047), had a pre-pregnancy BMI > 25 kg/m2 (p = 0.037), or delivered their baby via cesarean section (p = 0.021). In post hoc analyses, we also identified 22 specific EVP miRNA that were lower among participants who delivered their baby via cesarean section (Q < 0.05). Target genes of delivery mode-associated miRNAs were over-represented in pathways related to satiety signaling in infants (e.g., CCKR signaling) and mammary gland development and lactation (e.g., FGF signaling, EGF receptor signaling). In conclusion, we identified several key factors that may influence maternal EVP miRNA composition during two critical developmental windows, which should be considered in future studies investigating EVP miRNA roles in maternal and child health.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Lactante , Humanos , Embarazo , Femenino , MicroARNs/metabolismo , Leche Humana/metabolismo , Cesárea , Estudios de Cohortes , Epigénesis Genética , Proyectos Piloto , Periodo Posparto , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo
5.
Biostatistics ; 23(3): 926-948, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-33720330

RESUMEN

In light of the low signal-to-noise nature of many large biological data sets, we propose a novel method to learn the structure of association networks using Gaussian graphical models combined with prior knowledge. Our strategy includes two parts. In the first part, we propose a model selection criterion called structural Bayesian information criterion, in which the prior structure is modeled and incorporated into Bayesian information criterion. It is shown that the popular extended Bayesian information criterion is a special case of structural Bayesian information criterion. In the second part, we propose a two-step algorithm to construct the candidate model pool. The algorithm is data-driven and the prior structure is embedded into the candidate model automatically. Theoretical investigation shows that under some mild conditions structural Bayesian information criterion is a consistent model selection criterion for high-dimensional Gaussian graphical model. Simulation studies validate the superiority of the proposed algorithm over the existing ones and show the robustness to the model misspecification. Application to relative concentration data from infant feces collected from subjects enrolled in a large molecular epidemiological cohort study validates that metabolic pathway involvement is a statistically significant factor for the conditional dependence between metabolites. Furthermore, new relationships among metabolites are discovered which can not be identified by the conventional methods of pathway analysis. Some of them have been widely recognized in biological literature.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica , Teorema de Bayes , Estudios de Cohortes , Perfilación de la Expresión Génica/métodos , Humanos , Distribución Normal
6.
Pediatr Res ; 94(1): 135-142, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36627359

RESUMEN

BACKGROUND: The metabolomics profiles of maternal plasma during pregnancy and cord plasma at birth might influence fetal growth and birth anthropometry. The objective was to examine how maternal plasma and umbilical cord plasma metabolites are associated with newborn anthropometric measures, a known predictor of future health outcomes. METHODS: Pregnant women between 24 and 28 weeks of gestation were recruited as part of a prospective cohort study. Blood samples from 413 women at enrollment and 787 infant cord blood samples were analyzed using the Biocrates AbsoluteIDQ® p180 kit. Multivariable linear regression models were used to examine associations of cord and maternal metabolites with infant anthropometry at birth. RESULTS: In cord blood samples from this rural cohort from New Hampshire of largely white residents, 13 metabolites showed negative associations, and 10 metabolites showed positive associations with birth weight Z-score. Acylcarnitine C5 showed negative association, and 4 lysophosphatidylcholines showed positive associations with birth length Z-score. Maternal blood metabolites did not significantly correlate with birth weight and length Z-scores. CONCLUSIONS: Consistent findings were observed for several acylcarnitines that play a role in utilization of energy sources, and a lysophosphatidylcholine that is part of oxidative stress and inflammatory response pathways in cord plasma samples. IMPACT: The metabolomics profiles of maternal plasma during pregnancy and cord plasma at birth may influence fetal growth and birth anthropometry. This study examines the independent effects of maternal gestational and infant cord blood metabolomes across different classes of metabolites on birth anthropometry. Acylcarnitine species were negatively associated and glycerophospholipids species were positively associated with weight and length Z-scores at birth in the cord plasma samples, but not in the maternal plasma samples. This study identifies lipid metabolites in infants that possibly may affect early growth.


Asunto(s)
Sangre Fetal , Metabolómica , Recién Nacido , Lactante , Humanos , Embarazo , Femenino , Peso al Nacer , Estudios Prospectivos , Sangre Fetal/metabolismo , Cordón Umbilical
7.
PLoS Comput Biol ; 18(5): e1010091, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35584140

RESUMEN

Research in human-associated microbiomes often involves the analysis of taxonomic count tables generated via high-throughput sequencing. It is difficult to apply statistical tools as the data is high-dimensional, sparse, and compositional. An approachable way to alleviate high-dimensionality and sparsity is to aggregate variables into pre-defined sets. Set-based analysis is ubiquitous in the genomics literature and has demonstrable impact on improving interpretability and power of downstream analysis. Unfortunately, there is a lack of sophisticated set-based analysis methods specific to microbiome taxonomic data, where current practice often employs abundance summation as a technique for aggregation. This approach prevents comparison across sets of different sizes, does not preserve inter-sample distances, and amplifies protocol bias. Here, we attempt to fill this gap with a new single-sample taxon enrichment method that uses a novel log-ratio formulation based on the competitive null hypothesis commonly used in the enrichment analysis literature. Our approach, titled competitive balances for taxonomic enrichment analysis (CBEA), generates sample-specific enrichment scores as the scaled log-ratio of the subcomposition defined by taxa within a set and the subcomposition defined by its complement. We provide sample-level significance testing by estimating an empirical null distribution of our test statistic with valid p-values. Herein, we demonstrate, using both real data applications and simulations, that CBEA controls for type I error, even under high sparsity and high inter-taxa correlation scenarios. Additionally, CBEA provides informative scores that can be inputs to downstream analyses such as prediction tasks.


Asunto(s)
Microbiota , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Microbiota/genética
8.
Pediatr Res ; 92(6): 1757-1766, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35568730

RESUMEN

BACKGROUND: Young children are frequently exposed to antibiotics, with the potential for collateral consequences to the gut microbiome. The impact of antibiotic exposures to off-target microbes (i.e., bacteria not targeted by treatment) and antibiotic resistance genes (ARGs) is poorly understood. METHODS: We used metagenomic sequencing data from paired stool samples collected prior to antibiotic exposure and at 1 year from over 200 infants and a difference-in-differences approach to assess the relationship between subsequent exposures and the abundance or compositional diversity of microbes and ARGs while adjusting for covariates. RESULTS: By 1 year, the abundance of multiple species and ARGs differed by antibiotic exposure. Compared to infants never exposed to antibiotics, Bacteroides vulgatus relative abundance increased by 1.72% (95% CI: 0.19, 3.24) while Bacteroides fragilis decreased by 1.56% (95% CI: -4.32, 1.21). Bifidobacterium species also exhibited opposing trends. ARGs associated with exposure included class A beta-lactamase gene CfxA6. Among infants attending day care, Escherichia coli and ARG abundance were both positively associated with antibiotic use. CONCLUSION: Novel findings, including the importance of day care attendance, were identified through considering microbiome data at baseline and post-intervention. Thus, our study design and approach have important implications for future studies evaluating the unintended impacts of antibiotics. IMPACT: The impact of antibiotic exposure to off-target microbes and antibiotic resistance genes in the gut is poorly defined. We quantified these impacts in two cohort studies using a difference-in-differences approach. Novel to microbiome studies, we used pre/post-antibiotic data to emulate a randomized controlled trial. Compared to infants unexposed to antibiotics between baseline and 1 year, the relative abundance of multiple off-target species and antibiotic resistance genes was altered. Infants who attended day care and were exposed to antibiotics within the first year had a higher abundance of Escherichia coli and antibiotic resistance genes; a novel finding warranting further investigation.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Niño , Humanos , Lactante , Preescolar , Antibacterianos/efectos adversos , Microbioma Gastrointestinal/genética , Estudios de Cohortes , Escherichia coli
9.
BMC Microbiol ; 21(1): 201, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215179

RESUMEN

BACKGROUND: The human gut microbiome harbors a collection of bacterial antimicrobial resistance genes (ARGs) known as the resistome. The factors associated with establishment of the resistome in early life are not well understood. We investigated the early-life exposures and taxonomic signatures associated with resistome development over the first year of life in a large, prospective cohort in the United States. Shotgun metagenomic sequencing was used to profile both microbial composition and ARGs in stool samples collected at 6 weeks and 1 year of age from infants enrolled in the New Hampshire Birth Cohort Study. Negative binomial regression and statistical modeling were used to examine infant factors such as sex, delivery mode, feeding method, gestational age, antibiotic exposure, and infant gut microbiome composition in relation to the diversity and relative abundance of ARGs. RESULTS: Metagenomic sequencing was performed on paired samples from 195 full term (at least 37 weeks' gestation) and 15 late preterm (33-36 weeks' gestation) infants. 6-week samples compared to 1-year samples had 4.37 times (95% CI: 3.54-5.39) the rate of harboring ARGs. The majority of ARGs that were at a greater relative abundance at 6 weeks (chi-squared p < 0.01) worked through the mechanism of antibiotic efflux. The overall relative abundance of the resistome was strongly correlated with Proteobacteria (Spearman correlation = 78.9%) and specifically Escherichia coli (62.2%) relative abundance in the gut microbiome. Among infant characteristics, delivery mode was most strongly associated with the diversity and relative abundance of ARGs. Infants born via cesarean delivery had a trend towards a higher risk of harboring unique ARGs [relative risk = 1.12 (95% CI: 0.97-1.29)] as well as having an increased risk for overall ARG relative abundance [relative risk = 1.43 (95% CI: 1.12-1.84)] at 1 year compared to infants born vaginally. CONCLUSIONS: Our findings suggest that the developing infant gut resistome may be alterable by early-life exposures. Establishing the extent to which infant characteristics and early-life exposures impact the resistome can ultimately lead to interventions that decrease the transmission of ARGs and thus the risk of antibiotic resistant infections.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Farmacorresistencia Microbiana/genética , Escherichia coli/fisiología , Microbioma Gastrointestinal/genética , Parto Obstétrico/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Heces/microbiología , Métodos de Alimentación/estadística & datos numéricos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Metagenómica
10.
BMC Microbiol ; 21(1): 238, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454437

RESUMEN

BACKGROUND: The infant intestinal microbiome plays an important role in metabolism and immune development with impacts on lifelong health. The linkage between the taxonomic composition of the microbiome and its metabolic phenotype is undefined and complicated by redundancies in the taxon-function relationship within microbial communities. To inform a more mechanistic understanding of the relationship between the microbiome and health, we performed an integrative statistical and machine learning-based analysis of microbe taxonomic structure and metabolic function in order to characterize the taxa-function relationship in early life. RESULTS: Stool samples collected from infants enrolled in the New Hampshire Birth Cohort Study (NHBCS) at approximately 6-weeks (n = 158) and 12-months (n = 282) of age were profiled using targeted and untargeted nuclear magnetic resonance (NMR) spectroscopy as well as DNA sequencing of the V4-V5 hypervariable region from the bacterial 16S rRNA gene. There was significant inter-omic concordance based on Procrustes analysis (6 weeks: p = 0.056; 12 months: p = 0.001), however this association was no longer significant when accounting for phylogenetic relationships using generalized UniFrac distance metric (6 weeks: p = 0.376; 12 months: p = 0.069). Sparse canonical correlation analysis showed significant correlation, as well as identifying sets of microbe/metabolites driving microbiome-metabolome relatedness. Performance of machine learning models varied across different metabolites, with support vector machines (radial basis function kernel) being the consistently top ranked model. However, predictive R2 values demonstrated poor predictive performance across all models assessed (avg: - 5.06% -- 6 weeks; - 3.7% -- 12 months). Conversely, the Spearman correlation metric was higher (avg: 0.344-6 weeks; 0.265-12 months). This demonstrated that taxonomic relative abundance was not predictive of metabolite concentrations. CONCLUSIONS: Our results suggest a degree of overall association between taxonomic profiles and metabolite concentrations. However, lack of predictive capacity for stool metabolic signatures reflects, in part, the possible role of functional redundancy in defining the taxa-function relationship in early life as well as the bidirectional nature of the microbiome-metabolome association. Our results provide evidence in favor of a multi-omic approach for microbiome studies, especially those focused on health outcomes.


Asunto(s)
Bacterias/genética , Heces/microbiología , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Metaboloma , Bacterias/clasificación , Bacterias/aislamiento & purificación , Cohorte de Nacimiento , Femenino , Humanos , Lactante , Aprendizaje Automático , Masculino , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
Nature ; 496(7446): 504-7, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23563266

RESUMEN

Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes. For some patients, dengue is a life-threatening illness. There are currently no licensed vaccines or specific therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global spread. The contemporary worldwide distribution of the risk of dengue virus infection and its public health burden are poorly known. Here we undertake an exhaustive assembly of known records of dengue occurrence worldwide, and use a formal modelling framework to map the global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal information from dengue cohort studies and population surfaces to infer the public health burden of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and the degree of urbanization. Using cartographic approaches, we estimate there to be 390 million (95% credible interval 284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level of disease severity). This infection total is more than three times the dengue burden estimate of the World Health Organization. Stratification of our estimates by country allows comparison with national dengue reporting, after taking into account the probability of an apparent infection being formally reported. The most notable differences are discussed. These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue. We anticipate that they will provide a starting point for a wider discussion about the global impact of this disease and will help to guide improvements in disease control strategies using vaccine, drug and vector control methods, and in their economic evaluation.


Asunto(s)
Dengue/epidemiología , Salud Global/estadística & datos numéricos , Estudios de Cohortes , Bases de Datos Factuales/normas , Dengue/transmisión , Dengue/virología , Virus del Dengue/fisiología , Humanos , Incidencia , Salud Pública/estadística & datos numéricos , Control de Calidad , Lluvia , Factores de Riesgo , Temperatura , Clima Tropical , Urbanización , Organización Mundial de la Salud
12.
Pediatr Res ; 84(1): 71-79, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29795209

RESUMEN

BACKGROUND: The impact of degree of prematurity at birth on premature infant gut microbiota has not been extensively studied in comparison to term infants in large cohorts. METHODS: To determine the effect of gestational age at birth and postnatal exposures on gut bacterial colonization in infants, we analyzed 65 stool samples from 17 premature infants in the neonatal intensive care unit, as well as 13 samples from 13 mostly moderate-to-late premature infants and 189 samples from 176 term infants in the New Hampshire Birth Cohort Study. Gut colonization patterns were determined with 16S rDNA microbiome profiling. RESULTS: Gut bacterial alpha-diversity differed between premature and term infants at 6 weeks of age, after adjusting for exposures (p = 0.027). Alpha-diversity varied between extremely premature (<28 weeks gestation) and very premature infants (≥28 but <32 weeks, p = 0.011), as well as between extremely and moderate-to-late premature infants (≥32 and <37 weeks, p = 0.004). Newborn antibiotic use among premature infants was associated with lower Bifidobacterium and Bacteroides abundance (p = 0.015 and p = 0.041). CONCLUSION: Gestational age at birth and early antibiotic exposure have significant effects on the premature infant gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Edad Gestacional , Recien Nacido Prematuro , Bacterias/clasificación , Análisis por Conglomerados , ADN Ribosómico/metabolismo , Heces/microbiología , Femenino , Humanos , Lactante , Recién Nacido , Cuidado Intensivo Neonatal , Estudios Longitudinales , Filogenia , Embarazo , ARN Ribosómico 16S/genética
13.
Am J Epidemiol ; 183(1): 61-9, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26667254

RESUMEN

Polyomaviruses (PyV) are potentially tumorigenic in humans. However, limited data exist on the population seroprevalence of PyVs and individual characteristics that relate to seropositivity. Using multiplex serology, we determined the seroprevalence of 10 human PyVs (BK, JC, KI, WU, MCV, HPyV6, HPyV7, TSV, HPyV9, and HPyV10) among controls from a population-based skin cancer case-control study (n = 460) conducted in New Hampshire between 1993 and 1995. On a subset of participants (n = 194), methylation at CpG dinucleotides across the genome was measured in peripheral blood using the Illumina Infinium HumanMethylation27 BeadChip array (Illumina Inc., San Diego, California), from which lymphocyte subtype proportions were inferred. All participants were seropositive for at least 1 PyV, with seroprevalences ranging from 17.6% (HPyV9) to 99.1% (HPyV10). Seropositivity to JC, MCV, and HPyV7 increased with age. JC and TSV seropositivity were more common among men than among women. Smokers were more likely to be HPyV9-seropositive but MCV-seronegative, and HPyV7 seropositivity was associated with prolonged glucocorticoid use. Based on DNA methylation profiles, differences were observed in CD8-positive T- and B-cell proportions by BK, JC, and HPyV9 seropositivity. Our findings suggest that PyV seropositivity is common in the United States and varies by sociodemographic and biological characteristics, including those related to immune function.


Asunto(s)
Infecciones por Polyomavirus/inmunología , Poliomavirus/inmunología , Neoplasias Cutáneas/virología , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , New Hampshire/epidemiología , Estudios Seroepidemiológicos , Factores Socioeconómicos
14.
J Infect Dis ; 211(3): 352-60, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25165161

RESUMEN

BACKGROUND: Live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV) are available for children. Local and systemic immunity induced by LAIV followed a month later by LAIV and IIV followed by LAIV were investigated with virus recovery after LAIV doses as surrogates for protection against influenza on natural exposure. METHODS: Fifteen children received IIV followed by LAIV, 13 an initial dose of LAIV, and 11 a second dose of LAIV. The studies were done during autumn 2009 and autumn 2010 with the same seasonal vaccine (A/California/07/09 [H1N1], A/Perth/16/09 [H3N2], B/Brisbane/60/08). RESULTS: Twenty-eight of 39 possible influenza viral strains were recovered after the initial dose of LAIV. When LAIV followed IIV, 21 of 45 viral strains were identified. When compared to primary LAIV infection, the decreased frequency of shedding with the IIV-LAIV schedule was significant (P = .023). With LAIV-LAIV, the fewest viral strains were recovered (3/33)--numbers significantly lower (P < .001) than shedding after initial LAIV and after IIV-LAIV (P < .001). Serum hemagglutination inhibition antibody responses were more frequent after IIV than LAIV (P = .02). In contrast, more mucosal immunoglobulin A responses were seen with LAIV. CONCLUSIONS: LAIV priming induces greater inhibition of virus recovery on LAIV challenge than IIV priming. The correlate(s) of protection are the subject of ongoing analysis. CLINICAL TRIALS REGISTRATION: NCT01246999.


Asunto(s)
Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Vacunas Atenuadas/inmunología , Vacunas de Productos Inactivados/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Niño , Preescolar , Femenino , Pruebas de Inhibición de Hemaglutinación/métodos , Humanos , Inmunoglobulina A/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Masculino , Vacunas Virales/inmunología
15.
J Pediatr ; 167(1): 138-47.e1-3, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25818499

RESUMEN

OBJECTIVE: To examine patterns of microbial colonization of the respiratory and intestinal tracts in early life in infants with cystic fibrosis (CF) and their associations with breastfeeding and clinical outcomes. STUDY DESIGN: A comprehensive, prospective longitudinal analysis of the upper respiratory and intestinal microbiota in a cohort of infants and young children with CF followed from birth was performed. Genus-level microbial community composition was characterized using 16S-targeted pyrosequencing, and relationships with exposures and outcomes were assessed using linear mixed-effects models, time-to-event analysis, and principal components analysis. RESULTS: Sequencing of 120 samples from 13 subjects collected from birth to 34 months revealed relationships between breastfeeding, microbial diversity in the respiratory and intestinal tracts, and the timing of onset of respiratory complications, including exacerbations and colonization with Pseudomonas aeruginosa. Fluctuations in the abundance of specific bacterial taxa preceded clinical outcomes, including a significant decrease in bacteria of the genus Parabacteroides within the intestinal tract prior to the onset of chronic P aeruginosa colonization. Specific assemblages of bacteria in intestinal samples, but not respiratory samples, were associated with CF exacerbation in early life, indicating that the intestinal microbiome may play a role in lung health. CONCLUSIONS: Our findings relating breastfeeding to respiratory outcomes, gut diversity to prolonged periods of health, and specific bacterial communities in the gut prior to respiratory complications in CF highlight a connection between the intestinal microbiome and health and point to potential opportunities for antibiotic or probiotic interventions. Further studies in larger cohorts validating these findings are needed.


Asunto(s)
Fibrosis Quística/microbiología , Intestinos/microbiología , Microbiota , Sistema Respiratorio/microbiología , Lactancia Materna , Preescolar , Progresión de la Enfermedad , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Estudios Prospectivos , Infecciones por Pseudomonas/complicaciones , Pseudomonas aeruginosa
16.
J Med Internet Res ; 17(7): e169, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26156032

RESUMEN

BACKGROUND: Multiple waves of transmission during infectious disease epidemics represent a major public health challenge, but the ecological and behavioral drivers of epidemic resurgence are poorly understood. In theory, community structure­aggregation into highly intraconnected and loosely interconnected social groups­within human populations may lead to punctuated outbreaks as diseases progress from one community to the next. However, this explanation has been largely overlooked in favor of temporal shifts in environmental conditions and human behavior and because of the difficulties associated with estimating large-scale contact patterns. OBJECTIVE: The aim was to characterize naturally arising patterns of human contact that are capable of producing simulated epidemics with multiple wave structures. METHODS: We used an extensive dataset of proximal physical contacts between users of a public Wi-Fi Internet system to evaluate the epidemiological implications of an empirical urban contact network. We characterized the modularity (community structure) of the network and then estimated epidemic dynamics under a percolation-based model of infectious disease spread on the network. We classified simulated epidemics as multiwave using a novel metric and we identified network structures that were critical to the network's ability to produce multiwave epidemics. RESULTS: We identified robust community structure in a large, empirical urban contact network from which multiwave epidemics may emerge naturally. This pattern was fueled by a special kind of insularity in which locally popular individuals were not the ones forging contacts with more distant social groups. CONCLUSIONS: Our results suggest that ordinary contact patterns can produce multiwave epidemics at the scale of a single urban area without the temporal shifts that are usually assumed to be responsible. Understanding the role of community structure in epidemic dynamics allows officials to anticipate epidemic resurgence without having to forecast future changes in hosts, pathogens, or the environment.


Asunto(s)
Enfermedades Transmisibles/epidemiología , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Epidemias/estadística & datos numéricos , Servicios Urbanos de Salud/normas , Enfermedades Transmisibles/transmisión , Brotes de Enfermedades , Humanos , Modelos Teóricos
17.
J Infect Dis ; 209(10): 1628-34, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24459191

RESUMEN

BACKGROUND: Response to challenge with live, attenuated, oral polio vaccine (OPV) is a measure of immunity induced by prior immunization. METHODS: Using stool samples from a study from Oman in which an initial schedule of inactivated polio vaccine (IPV) was followed by an OPV type 1 challenge, we quantitated virus shed, sequenced capsid proteins of recovered virus, and developed assays for neutralization of poliovirus and mucosal immunoglobulin A (IgA) detection. RESULTS: Neutralizing activity correlated with detection of polio-specific IgA in stool suspensions collected 7 days after OPV type 1 challenge. Both neutralization and IgA in stool were associated with cessation of virus shedding by day 7. Rapid development of an IgA response with cessation of shedding suggests that IPV primed for the early response to challenge. Correlation of neutralization activity and IgA detection provides evidence that polio-specific IgA intestinal antibody is a determinant of mucosal shedding/transmission and that IgA functions through neutralization of virus. In contrast, neither presence nor quantity of serum or intestinal antibody induced by IPV prior to challenge correlated with cessation of shedding. CONCLUSIONS: These assays provide an opportunity to study other immunization schedules to gain a broader understanding of the appearance and duration of a protective mucosal response to polio vaccination.


Asunto(s)
Anticuerpos Antivirales/química , Heces/virología , Intestinos/inmunología , Poliomielitis/prevención & control , Vacuna Antipolio Oral/inmunología , Poliovirus/aislamiento & purificación , Administración Oral , Anticuerpos Neutralizantes , Heces/química , Humanos , Inmunoglobulina A , Lactante , Vacuna Antipolio Oral/administración & dosificación
18.
Mol Autism ; 15(1): 21, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760865

RESUMEN

BACKGROUND: Identifying modifiable risk factors of autism spectrum disorders (ASDs) may inform interventions to reduce financial burden. The infant/toddler gut microbiome is one such feature that has been associated with social behaviors, but results vary between cohorts. We aimed to identify consistent overall and sex-specific associations between the early-life gut microbiome and autism-related behaviors. METHODS: Utilizing the Environmental influences on Children Health Outcomes (ECHO) consortium of United States (U.S.) pediatric cohorts, we gathered data on 304 participants with fecal metagenomic sequencing between 6-weeks to 2-years postpartum (481 samples). ASD-related social development was assessed with the Social Responsiveness Scale (SRS-2). Linear regression, PERMANOVA, and Microbiome Multivariable Association with Linear Models (MaAsLin2) were adjusted for sociodemographic factors. Stratified models estimated sex-specific effects. RESULTS: Genes encoding pathways for synthesis of short-chain fatty acids were associated with higher SRS-2 scores, indicative of ASDs. Fecal concentrations of butyrate were also positively associated with ASD-related SRS-2 scores, some of which may be explained by formula use. LIMITATIONS: The distribution of age at outcome assessment differed in the cohorts included, potentially limiting comparability between cohorts. Stool sample collection methods also differed between cohorts. Our study population reflects the general U.S. population, and thus includes few participants who met the criteria for being at high risk of developing ASD. CONCLUSIONS: Our study is among the first multicenter studies in the U.S. to describe prospective microbiome development from infancy in relation to neurodevelopment associated with ASDs. Our work contributes to clarifying which microbial features associate with subsequent diagnosis of neuropsychiatric outcomes. This will allow for future interventional research targeting the microbiome to change neurodevelopmental trajectories.


Asunto(s)
Heces , Microbioma Gastrointestinal , Conducta Social , Humanos , Femenino , Masculino , Lactante , Heces/microbiología , Estudios Prospectivos , Preescolar , Trastorno del Espectro Autista/microbiología
19.
Clin Infect Dis ; 56(4): 517-24, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23118271

RESUMEN

BACKGROUND: Few researchers have assessed the relationships between socioeconomic inequality and infectious disease outbreaks at the population level globally. We use a socioeconomic model to forecast national annual rates of infectious disease outbreaks. METHODS: We constructed a multivariate mixed-effects Poisson model of the number of times a given country was the origin of an outbreak in a given year. The dataset included 389 outbreaks of international concern reported in the World Health Organization's Disease Outbreak News from 1996 to 2008. The initial full model included 9 socioeconomic variables related to education, poverty, population health, urbanization, health infrastructure, gender equality, communication, transportation, and democracy, and 1 composite index. Population, latitude, and elevation were included as potential confounders. The initial model was pared down to a final model by a backwards elimination procedure. The dependent and independent variables were lagged by 2 years to allow for forecasting future rates. RESULTS: Among the socioeconomic variables tested, the final model included child measles immunization rate and telephone line density. The Democratic Republic of Congo, China, and Brazil were predicted to be at the highest risk for outbreaks in 2010, and Colombia and Indonesia were predicted to have the highest percentage of increase in their risk compared to their average over 1996-2008. CONCLUSIONS: Understanding socioeconomic factors could help improve the understanding of outbreak risk. The inclusion of the measles immunization variable suggests that there is a fundamental basis in ensuring adequate public health capacity. Increased vigilance and expanding public health capacity should be prioritized in the projected high-risk regions.


Asunto(s)
Enfermedades Transmisibles/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Modelos Teóricos , Brotes de Enfermedades/prevención & control , Escolaridad , Monitoreo Epidemiológico , Femenino , Predicción , Humanos , Masculino , Pobreza , Factores Socioeconómicos
20.
Front Microbiol ; 14: 1164553, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138613

RESUMEN

Introduction: Microbial communities inhabiting the human infant gut are important for immune system development and lifelong health. One critical exposure affecting the bacterial colonization of the infant gut is consumption of human milk, which contains diverse microbial communities and prebiotics. We hypothesized that human milk-associated microbial profiles are associated with those of the infant gut. Methods: Maternal-infant dyads enrolled in the New Hampshire Birth Cohort Study (n = 189 dyads) contributed breast milk and infant stool samples collected approximately at 6 weeks, 4 months, 6 months, 9 months, and 12 months postpartum (n = 572 samples). Microbial DNA was extracted from milk and stool and the V4-V5 region of the bacterial 16S rRNA gene was sequenced. Results: Clustering analysis identified three breast milk microbiome types (BMTs), characterized by differences in Streptococcus, Staphylococcus, Pseudomonas, Acinetobacter, and microbial diversity. Four 6-week infant gut microbiome types (6wIGMTs) were identified, differing in abundances of Bifidobacterium, Bacteroides, Clostridium, Streptococcus, and Escherichia/Shigella, while two 12-month IGMTs (12mIGMTs) differed primarily by Bacteroides presence. At 6 weeks, BMT was associated with 6wIGMT (Fisher's exact test value of p = 0.039); this association was strongest among infants delivered by Cesarean section (Fisher's exact test value of p = 0.0028). The strongest correlations between overall breast milk and infant stool microbial community structures were observed when comparing breast milk samples to infant stool samples collected at a subsequent time point, e.g., the 6-week breast milk microbiome associated with the 6-month infant gut microbiome (Mantel test Z-statistic = 0.53, value of p = 0.001). Streptoccous and Veillonella species abundance were correlated in 6-week milk and infant stool, and 4- and 6-month milk Pantoea species were associated with infant stool Lachnospiraceae genera at 9 and 12 months. Discussion: We identified clusters of human milk and infant stool microbial communities that were associated in maternal-infant dyads at 6 weeks of life and found that milk microbial communities were more strongly associated with infant gut microbial communities in infants delivered operatively and after a lag period. These results suggest that milk microbial communities have a long-term effect on the infant gut microbiome both through sharing of microbes and other molecular mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA