Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Respir Res ; 25(1): 106, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419014

RESUMEN

BACKGROUND: Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline. METHODS: PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) were generated from CT scans collected as part of the COPDGene study (n = 8956). Volume density (V) and Euler-Poincaré Characteristic (χ) image maps, measures of the extent and coalescence of pocket formations (i.e., topologies), respectively, were determined for both PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were assessed via multivariable regression models. Readouts were evaluated as inputs for predicting FEV1 decline using a machine learning model. RESULTS: Multivariable cross-sectional analysis of COPD subjects showed that V and χ measures for PRMfSAD and PRMNorm were independently associated with the amount of emphysema. Readouts χfSAD (ß of 0.106, p < 0.001) and VfSAD (ß of 0.065, p = 0.004) were also independently associated with FEV1% predicted. The machine learning model using PRM topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69. CONCLUSIONS: We demonstrated that V and χ of fSAD and Norm have independent value when associated with lung function and emphysema. In addition, we demonstrated that these readouts are predictive of spirometric decline when used as inputs in a ML model. Our topological PRM approach using PRMfSAD and PRMNorm may show promise as an early indicator of emphysema onset and COPD progression.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Estudios Transversales , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Volumen Espiratorio Forzado/fisiología
2.
J Magn Reson Imaging ; 42(6): 1759-64, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26012876

RESUMEN

PURPOSE: To evaluate between-site agreement of apparent diffusion coefficient (ADC) measurements in preclinical magnetic resonance imaging (MRI) systems. MATERIALS AND METHODS: A miniaturized thermally stable ice-water phantom was devised. ADC (mean and interquartile range) was measured over several days, on 4.7T, 7T, and 9.4T Bruker, Agilent, and Magnex small-animal MRI systems using a common protocol across seven sites. Day-to-day repeatability was expressed as percent variation of mean ADC between acquisitions. Cross-site reproducibility was expressed as 1.96 × standard deviation of percent deviation of ADC values. RESULTS: ADC measurements were equivalent across all seven sites with a cross-site ADC reproducibility of 6.3%. Mean day-to-day repeatability of ADC measurements was 2.3%, and no site was identified as presenting different measurements than others (analysis of variance [ANOVA] P = 0.02, post-hoc test n.s.). Between-slice ADC variability was negligible and similar between sites (P = 0.15). Mean within-region-of-interest ADC variability was 5.5%, with one site presenting a significantly greater variation than the others (P = 0.0013). CONCLUSION: Absolute ADC values in preclinical studies are comparable between sites and equipment, provided standardized protocols are employed.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/instrumentación , Imagen de Difusión por Resonancia Magnética/veterinaria , Aumento de la Imagen/instrumentación , Interpretación de Imagen Asistida por Computador/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Europa (Continente) , Fantasmas de Imagen/veterinaria , Fantasmas de Imagen/virología , Estados Unidos
3.
Acad Radiol ; 31(3): 1148-1159, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37661554

RESUMEN

RATIONALE AND OBJECTIVES: Small airways disease (SAD) and emphysema are significant components of chronic obstructive pulmonary disease (COPD), a heterogenous disease where predicting progression is difficult. SAD, a principal cause of airflow obstruction in mild COPD, has been identified as a precursor to emphysema. Parametric Response Mapping (PRM) of chest computed tomography (CT) can help distinguish SAD from emphysema. Specifically, topologic PRM can define local patterns of both diseases to characterize how and in whom COPD progresses. We aimed to determine if distribution of CT-based PRM of functional SAD (fSAD) is associated with emphysema progression. MATERIALS AND METHODS: We analyzed paired inspiratory-expiratory chest CT scans at baseline and 5-year follow up in 1495 COPDGene subjects using topological analyses of PRM classifications. By spatially aligning temporal scans, we mapped local emphysema at year five to baseline lobar PRM-derived topological readouts. K-means clustering was applied to all observations. Subjects were subtyped based on predominant PRM cluster assignments and assessed using non-parametric statistical tests to determine differences in PRM values, pulmonary function metrics, and clinical measures. RESULTS: We identified distinct lobar imaging patterns and classified subjects into three radiologic subtypes: emphysema-dominant (ED), fSAD-dominant (FD), and fSAD-transition (FT: transition from healthy lung to fSAD). Relative to year five emphysema, FT showed rapid local emphysema progression (-57.5% ± 1.1) compared to FD (-49.9% ± 0.5) and ED (-33.1% ± 0.4). FT consisted primarily of at-risk subjects (roughly 60%) with normal spirometry. CONCLUSION: The FT subtype of COPD may allow earlier identification of individuals without spirometrically-defined COPD at-risk for developing emphysema.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
4.
medRxiv ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37333382

RESUMEN

Objectives: Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients, and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline. Materials and Methods: PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) were generated from CT scans collected as part of the COPDGene study (n=8956). Volume density (V) and Euler-Poincaré Characteristic (χ) image maps, measures of the extent and coalescence of pocket formations (i.e., topologies), respectively, were determined for both PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were assessed via multivariable regression models. Readouts were evaluated as inputs for predicting FEV1 decline using a machine learning model. Results: Multivariable cross-sectional analysis of COPD subjects showed that V and χ measures for PRMfSAD and PRMNorm were independently associated with the amount of emphysema. Readouts χfSAD (ß of 0.106, p<0.001) and VfSAD (ß of 0.065, p=0.004) were also independently associated with FEV1% predicted. The machine learning model using PRM topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69. Conclusions: We demonstrated that V and χ of fSAD and Norm have independent value when associated with lung function and emphysema. In addition, we demonstrated that these readouts are predictive of spirometric decline when used as inputs in a ML model. Our topological PRM approach using PRMfSAD and PRMNorm may show promise as an early indicator of emphysema onset and COPD progression.

5.
NMR Biomed ; 25(7): 935-42, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22190279

RESUMEN

Vascular-targeted therapies have shown promise as adjuvant cancer treatment. As these agents undergo clinical evaluation, sensitive imaging biomarkers are needed to assess drug target interaction and treatment response. In this study, dynamic contrast enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) were evaluated for detecting response of intracerebral 9 L gliosarcomas to the antivascular agent VEGF-Trap, a fusion protein designed to bind all forms of Vascular Endothelial Growth Factor-A (VEGF-A) and Placental Growth Factor (PGF). Rats with 9 L tumors were treated twice weekly for two weeks with vehicle or VEGF-Trap. DCE- and DW-MRI were performed one day prior to treatment initiation and one day following each administered dose. Kinetic parameters (K(trans), volume transfer constant; k(ep), efflux rate constant from extravascular/extracellular space to plasma; and v(p), blood plasma volume fraction) and the apparent diffusion coefficient (ADC) over the tumor volumes were compared between groups. A significant decrease in kinetic parameters was observed 24 hours following the first dose of VEGF-Trap in treated versus control animals (p < 0.05) and was accompanied by a decline in ADC values. In addition to the significant hemodynamic effect, VEGF-Trap treated animals exhibited significantly longer tumor doubling times (p < 0.05) compared to the controls. Histological findings were found to support imaging response metrics. In conclusion, kinetic MRI parameters and change in ADC have been found to serve as sensitive and early biomarkers of VEGF-Trap anti-vascular targeted therapy.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/tratamiento farmacológico , Imagen de Difusión por Resonancia Magnética/métodos , Glioma/irrigación sanguínea , Glioma/tratamiento farmacológico , Proteínas Recombinantes de Fusión/farmacología , Inhibidores de la Angiogénesis/farmacología , Animales , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/patología , Medios de Contraste , Difusión , Modelos Animales de Enfermedad , Glioma/patología , Hemodinámica , Masculino , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Ratas , Receptores de Factores de Crecimiento Endotelial Vascular , Carga Tumoral/efectos de los fármacos
6.
Cells ; 11(4)2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35203345

RESUMEN

Chronic rejection of lung allografts has two major subtypes, bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS), which present radiologically either as air trapping with small airways disease or with persistent pleuroparenchymal opacities. Parametric response mapping (PRM), a computed tomography (CT) methodology, has been demonstrated as an objective readout of BOS and RAS and bears prognostic importance, but has yet to be correlated to biological measures. Using a topological technique, we evaluate the distribution and arrangement of PRM-derived classifications of pulmonary abnormalities from lung transplant recipients undergoing redo-transplantation for end-stage BOS (N = 6) or RAS (N = 6). Topological metrics were determined from each PRM classification and compared to structural and biological markers determined from microCT and histopathology of lung core samples. Whole-lung measurements of PRM-defined functional small airways disease (fSAD), which serves as a readout of BOS, were significantly elevated in BOS versus RAS patients (p = 0.01). At the core-level, PRM-defined parenchymal disease, a potential readout of RAS, was found to correlate to neutrophil and collagen I levels (p < 0.05). We demonstrate the relationship of structural and biological markers to the CT-based distribution and arrangement of PRM-derived readouts of BOS and RAS.


Asunto(s)
Bronquiolitis Obliterante , Enfermedad Injerto contra Huésped , Trasplante de Pulmón , Aloinjertos , Biomarcadores , Bronquiolitis Obliterante/diagnóstico por imagen , Humanos , Inflamación , Pulmón/diagnóstico por imagen , Trasplante de Pulmón/efectos adversos , Síndrome , Tomografía Computarizada por Rayos X/métodos
7.
J Neurooncol ; 101(3): 379-90, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20577779

RESUMEN

The purpose of this study was to further evaluate the therapeutic efficacy of convection enhanced delivery (CED) of carboplatin in combination with radiotherapy for treatment of the F98 rat glioma. Tumor cells were implanted stereotactically into the brains of syngeneic Fischer rats, and 13 or 17 d. later carboplatin (20 µg/10 µl) was administered by either CED over 30 min or by Alzet osmotic pumps (0.5 µg/µl/h for 168 h.) beginning at 7 d after tumor implantation. Rats were irradiated with a 15 Gy fractionated dose (5 Gy × 3) of 6 MV photons to the whole brain beginning on the day after drug administration. Other groups of rats received either carboplatin or X-irradiation alone. The tumor carboplatin concentration following CED of 20 µg in 10 µl was 10.4 µg/g, which was equal to that observed following i.v. administration of 100 mg/kg b.w. Rats bearing small tumors, treated with carboplatin and X-irradiation, had a mean survival time (MST) of 83.4 d following CED and 111.8 d following pump delivery with 40% of the latter surviving >180 d (i.e. cured) compared to 55.2 d for CED and 77.2 d. for pump delivery of carboplatin alone and 31.8 d and 24.2 d, respectively, for X-irradiated and untreated controls. There was no microscopic evidence of residual tumor in the brains of all long-term survivors. Not surprisingly, rats with large tumors had much shorter MSTs. Only modest increases in MSTs were observed in animals that received either oral administration or CED of temozolomide plus X-irradiation (23.2 d and 29.3 d) compared to X-irradiation alone. The present survival data, and those previously reported by us, are among the best ever obtained with the F98 glioma model. Initially, they could provide a platform for a Phase I clinical trial to evaluate the safety and potential therapeutic efficacy of CED of carboplatin in patients with recurrent glioblastomas, and ultimately a Phase II trial of carboplatin in combination with radiation therapy.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , Carboplatino/administración & dosificación , Sistemas de Liberación de Medicamentos , Glioma/tratamiento farmacológico , Glioma/radioterapia , Alquilantes/toxicidad , Animales , Neoplasias Encefálicas/inducido químicamente , Neoplasias Encefálicas/patología , Terapia Combinada , Convección , Modelos Animales de Enfermedad , Etilnitrosourea/toxicidad , Femenino , Glioma/inducido químicamente , Glioma/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Dosis de Radiación , Ratas , Ratas Endogámicas F344 , Tasa de Supervivencia , Distribución Tisular , Terapia por Rayos X
8.
Acad Radiol ; 28(12): 1711-1720, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-32928633

RESUMEN

RATIONALE AND OBJECTIVES: Glioblastoma image evaluation utilizes Magnetic Resonance Imaging contrast-enhanced, T1-weighted, and noncontrast T2-weighted fluid-attenuated inversion recovery (FLAIR) acquisitions. Disease progression assessment relies on changes in tumor diameter, which correlate poorly with survival. To improve treatment monitoring in glioblastoma, we investigated serial voxel-wise comparison of anatomically-aligned FLAIR signal as an early predictor of GBM progression. MATERIALS AND METHODS: We analyzed longitudinal normalized FLAIR images (rFLAIR) from 52 subjects using voxel-wise Parametric Response Mapping (PRM) to monitor volume fractions of increased (PRMrFLAIR+), decreased (PRMrFLAIR-), or unchanged (PRMrFLAIR0) rFLAIR intensity. We determined response by rFLAIR between pretreatment and 10 weeks posttreatment. Risk of disease progression in a subset of subjects (N = 26) with stable disease or partial response as defined by Response Assessment in Neuro-Oncology (RANO) criteria was assessed by PRMrFLAIR between weeks 10 and 20 and continuously until the PRMrFLAIR+ exceeded a defined threshold. RANO defined criteria were compared with PRM-derived outcomes for tumor progression detection. RESULTS: Patient stratification for progression-free survival (PFS) and overall survival (OS) was achieved at week 10 using RANO criteria (PFS: p <0.0001; OS: p <0.0001), relative change in FLAIR-hyperintense volume (PFS: p = 0.0011; OS: p <0.0001), and PRMrFLAIR+ (PFS: p <0.01; OS: p <0.001). PRMrFLAIR+ also stratified responding patients' progression between weeks 10 and 20 (PFS: p <0.05; OS: p = 0.01) while changes in FLAIR-volume measurements were not predictive. As a continuous evaluation, PRMrFLAIR+ exceeding 10% stratified patients for PFA after 5.6 months (p<0.0001), while RANO criteria did not stratify patients until 15.4 months (p <0.0001). CONCLUSION: PRMrFLAIR may provide an early biomarker of disease progression in glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico por imagen , Medios de Contraste , Progresión de la Enfermedad , Glioblastoma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Recurrencia Local de Neoplasia , Estudios Retrospectivos
9.
PLoS One ; 16(3): e0248902, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33760861

RESUMEN

BACKGROUND: Radiologic evidence of air trapping (AT) on expiratory computed tomography (CT) scans is associated with early pulmonary dysfunction in patients with cystic fibrosis (CF). However, standard techniques for quantitative assessment of AT are highly variable, resulting in limited efficacy for monitoring disease progression. OBJECTIVE: To investigate the effectiveness of a convolutional neural network (CNN) model for quantifying and monitoring AT, and to compare it with other quantitative AT measures obtained from threshold-based techniques. MATERIALS AND METHODS: Paired volumetric whole lung inspiratory and expiratory CT scans were obtained at four time points (0, 3, 12 and 24 months) on 36 subjects with mild CF lung disease. A densely connected CNN (DN) was trained using AT segmentation maps generated from a personalized threshold-based method (PTM). Quantitative AT (QAT) values, presented as the relative volume of AT over the lungs, from the DN approach were compared to QAT values from the PTM method. Radiographic assessment, spirometric measures, and clinical scores were correlated to the DN QAT values using a linear mixed effects model. RESULTS: QAT values from the DN were found to increase from 8.65% ± 1.38% to 21.38% ± 1.82%, respectively, over a two-year period. Comparison of CNN model results to intensity-based measures demonstrated a systematic drop in the Dice coefficient over time (decreased from 0.86 ± 0.03 to 0.45 ± 0.04). The trends observed in DN QAT values were consistent with clinical scores for AT, bronchiectasis, and mucus plugging. In addition, the DN approach was found to be less susceptible to variations in expiratory deflation levels than the threshold-based approach. CONCLUSION: The CNN model effectively delineated AT on expiratory CT scans, which provides an automated and objective approach for assessing and monitoring AT in CF patients.


Asunto(s)
Aire , Aprendizaje Profundo , Espiración/fisiología , Tomografía Computarizada por Rayos X , Niño , Femenino , Humanos , Masculino , Redes Neurales de la Computación , Análisis de Regresión , Pruebas de Función Respiratoria
10.
Magn Reson Med ; 64(5): 1499-509, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20860004

RESUMEN

The aim of this study was to empirically test the effect of chemotherapy-induced tissue changes in a glioma model as measured by several diffusion indices calculated from nonmonoexponential formalisms over a wide range of b-values. We also compared these results to the conventional two-point apparent diffusion coefficient calculation using nominal b-values. Diffusion-weighted imaging was performed over an extended range of b-values (120-4000 sec/mm(2) ) on intracerebral rat 9L gliomas before and after a single dose of 1,3-bis(2-chloroethyl)-1-nitrosourea. Diffusion indices from three formalisms of diffusion-weighted signal decay [(a) two-point analytical calculation using either low or high b-values, (b) a stretched exponential formalism, and (c) a biexponential fit] were tested for responsiveness to therapy-induced differences between control and treated groups. Diffusion indices sensitive to "fast diffusion" produced the largest response to treatment, which resulted in significant differences between groups. These trends were not observed for "slow diffusion" indices. Although the highest rate of response was observed from the biexponential formalism, this was not found to be significantly different from the conventional monoexponential apparent diffusion coefficient method. In conclusion, parameters from the more complicated nonmonoexponential formalisms did not provide additional sensitivity to treatment response in this glioma model beyond that observed from the two-point conventional monoexponential apparent diffusion coefficient method.


Asunto(s)
Algoritmos , Carmustina/uso terapéutico , Imagen de Difusión por Resonancia Magnética/métodos , Gliosarcoma/diagnóstico , Gliosarcoma/tratamiento farmacológico , Interpretación de Imagen Asistida por Computador/métodos , Animales , Antineoplásicos Alquilantes/uso terapéutico , Línea Celular Tumoral , Aumento de la Imagen/métodos , Masculino , Pronóstico , Ratas , Ratas Endogámicas F344 , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resultado del Tratamiento
11.
Acad Radiol ; 26(9): 1202-1214, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30545681

RESUMEN

RATIONALE AND OBJECTIVES: The aim of this study was to assess variability in quantitative air trapping (QAT) measurements derived from spatially aligned expiration CT scans. MATERIALS AND METHODS: Sixty-four paired CT examinations, from 16 school-age cystic fibrosis subjects examined at four separate time intervals, were used in this study. For each pair, visually inspected lobe segmentation maps were generated and expiration CT data were registered to the inspiration CT frame. Measurements of QAT, the percentage of voxels on the expiration CT scan below a set threshold were calculated for each lobe and whole-lung from the registered expiration CT and compared to the true values from the unregistered data. RESULTS: A mathematical model, which simulates the effect of variable regions of lung deformation on QAT values calculated from aligned to those from unaligned data, showed the potential for large bias. Assessment of experimental QAT measurements using Bland-Altman plots corroborated the model simulations, demonstrating biases greater than 5% when QAT was approximately 40% of lung volume. These biases were removed when calculating QAT from aligned expiration CT data using the determinant of the Jacobian matrix. We found, by Dice coefficient analysis, good agreement between aligned expiration and inspiration segmentation maps for the whole-lung and all but one lobe (Dice coefficient > 0.9), with only the lingula generating a value below 0.9 (mean and standard deviation of 0.85 ± 0.06). CONCLUSION: The subtle and predictable variability in corrected QAT observed in this study suggests that image registration is reliable in preserving the accuracy of the quantitative metrics.


Asunto(s)
Fibrosis Quística/diagnóstico por imagen , Espiración , Inhalación , Tomografía Computarizada por Rayos X , Adolescente , Algoritmos , Niño , Femenino , Humanos , Masculino , Interpretación de Imagen Radiográfica Asistida por Computador , Volumen de Ventilación Pulmonar
12.
Cancer Res ; 66(9): 4687-92, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16651420

RESUMEN

One of the greatest challenges in developing therapeutic regimens is the inability to rapidly and objectively assess tumor response due to treatment. Moreover, tumor response to therapeutic intervention in many cases is transient, and progressive alterations within the tumor may mask the effectiveness of an initially successful therapy. The ability to detect these changes as they occur would allow timely initiation of alternative approaches, maximizing therapeutic outcome. We investigated the ability of diffusion magnetic resonance imaging (MRI) to provide a sensitive measure of tumor response throughout the course of treatment, possibly identifying changes in sensitivity to the therapy. Orthotopic 9L gliomas were subjected to two separate therapeutic regimens, with one group receiving a single 5-day cycle (1omega) of low-dose 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and a second group receiving two cycles at the same dose, bisected with 2 days of rest (2omega). Apparent diffusion coefficient maps were acquired before and throughout treatment to observe changes in water mobility, and these observations were correlated to standard measures of therapeutic response and outcome. Our results showed that diffusion MRI was indeed able to detect the emergence of a drug-resistant tumor subpopulation subsequent to an initially successful cycle of BCNU therapy, leading to minimal gains from a second cycle. These diffusion MRI findings were highly correlated with tumor growth delay, animal survival, and ex vivo growth inhibition assays showing emerging resistance in excised tumors. Overall, this study highlights the ability of diffusion MRI to provide sensitive dynamic assessment of therapy-induced response, allowing early opportunities for optimization of therapeutic protocols.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Carmustina/administración & dosificación , Imagen de Difusión por Resonancia Magnética/métodos , Glioma/tratamiento farmacológico , Animales , Neoplasias Encefálicas/patología , Esquema de Medicación , Resistencia a Antineoplásicos , Glioma/patología , Masculino , Ratas , Ratas Endogámicas F344
13.
Am J Nucl Med Mol Imaging ; 8(3): 189-199, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30042870

RESUMEN

Metastatic prostate cancer to bone remains incurable, driving efforts to develop individualized, targeted therapies to improve clinical outcomes while limiting adverse side-effects. Due to the complexity in cellular signaling pathways and the interaction between cancer and its microenvironment, multiparametric imaging approaches for treatment response may improve understanding of the biological effects of therapy. An orthotopic model of castration resistant prostate cancer (CRPC) bone metastasis was treated with the tyrosine kinase inhibitor Cabozantinib (CABO). Response was assessed using CT to monitor bone volumes, 99mTc-MDP SPECT for bone metabolism, and anatomical and diffusion MRI for tumor volume and cell death. A concurrent clinical trial of CABO for CRPC patients also evaluated multimodality imaging in correlation with standard response criteria. Response in the preclinical study found significant slowing in tumor growth rate (P<0.01), rise in tumor apparent diffusion coefficient (ADC, P<0.001), and drop in 99mTc-MDP adsorption (P<0.05). Loss of bone volume did not slow with treatment, attributed to the highly aggressive and osteolytic nature of the PC3 cell line. Clinical trial analysis found only a single subject who progressed after 12 weeks of therapy. Imaging at 6 weeks corroborated the 12-week radiological assessment with positive response visible as increased ADC and decreased vascular metrics. Conversely, the subject who progressed at 12 weeks had no change in ADC, and substantial drops in vascular metrics. These results showcase a multifaceted translational imaging approach for detecting targeted treatment response with effective blockade of tumor vascularization, tumor cell kill, and reduced proliferation.

14.
Tomography ; 3(3): 163-173, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29124128

RESUMEN

Thoracic aortic aneurysm is a common and lethal disease that requires regular imaging surveillance to determine timing of surgical repair and prevent major complications such as rupture. Current cross-sectional imaging surveillance techniques, largely based on computed tomography angiography, are focused on measurement of maximal aortic diameter, although this approach is limited to fixed anatomic positions and is prone to significant measurement error. Here we present preliminary results showing the feasibility of a novel technique for assessing change in aortic dimensions, termed vascular deformation mapping (VDM). This technique allows quantification of 3-dimensional changes in the aortic wall geometry through nonrigid coregistration of computed tomography angiography images and spatial Jacobian analysis of aortic deformation. Through several illustrative cases we demonstrate that this method can be used to measure changes in the aortic wall geometry among patients with stable and enlarging thoracic aortic aneurysm and dissection. Furthermore, VDM results yield observations about the presence, distribution, and rate of aortic wall deformation that are not apparent by routine clinical evaluation. Finally, we show the feasibility of superposing patient-specific VDM results on a 3-dimensional aortic model using color 3D printing and discuss future directions and potential applications for the VDM technique.

15.
Sci Rep ; 7(1): 2999, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592874

RESUMEN

Parametric response mapping (PRM) of paired CT lung images has been shown to improve the phenotyping of COPD by allowing for the visualization and quantification of non-emphysematous air trapping component, referred to as functional small airways disease (fSAD). Although promising, large variability in the standard method for analyzing PRMfSAD has been observed. We postulate that representing the 3D PRMfSAD data as a single scalar quantity (relative volume of PRMfSAD) oversimplifies the original 3D data, limiting its potential to detect the subtle progression of COPD as well as varying subtypes. In this study, we propose a new approach to analyze PRM. Based on topological techniques, we generate 3D maps of local topological features from 3D PRMfSAD classification maps. We found that the surface area of fSAD (SfSAD) was the most robust and significant independent indicator of clinically meaningful measures of COPD. We also confirmed by micro-CT of human lung specimens that structural differences are associated with unique SfSAD patterns, and demonstrated longitudinal feature alterations occurred with worsening pulmonary function independent of an increase in disease extent. These findings suggest that our technique captures additional COPD characteristics, which may provide important opportunities for improved diagnosis of COPD patients.


Asunto(s)
Biometría/métodos , Imagenología Tridimensional/métodos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/patología , Tomografía Computarizada por Rayos X/métodos , Femenino , Humanos , Estudios Longitudinales , Masculino
16.
Tomography ; 2(1): 67-78, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27213182

RESUMEN

Myelofibrosis (MF) is a hematologic neoplasm arising as a primary disease or secondary to other myeloproliferative neoplasms (MPNs). Both primary and secondary MF are uniquely associated with progressive bone marrow fibrosis, displacing normal hematopoietic cells from the marrow space and disrupting normal production of mature blood cells. Activation of the JAK2 signaling pathway in hematopoietic stem cells commonly causes MF, and ruxolitinib, a drug targeting this pathway, is the treatment of choice for many patients. However, current measures of disease status in MF do not necessarily predict response to treatment with ruxolitinib or other drugs in MF. Bone marrow biopsies are invasive and prone to sampling error, while measurements of spleen volume only indirectly reflect bone marrow status. Toward the goal of developing an imaging biomarker for treatment response in MF, we present preliminary results from a prospective clinical study evaluating parametric response mapping (PRM) of quantitative Dixon MRI bone marrow fat fraction maps in four MF patients treated with ruxolitinib. PRM allows for the voxel-wise identification of significant change in quantitative imaging readouts over time, in this case the bone marrow fat content. We identified heterogeneous response patterns of bone marrow fat among patients and within different bone marrow sites in the same patient. We also observed discordance between changes in bone marrow fat fraction and reductions in spleen volume, the standard imaging metric for treatment efficacy. This study provides initial support for PRM analysis of quantitative MRI of bone marrow fat to monitor response to therapy in MF, setting the stage for larger studies to further develop and validate this method as a complementary imaging biomarker for this disease.

17.
Tomography ; 2(4): 267-275, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28286871

RESUMEN

Management of glioblastoma multiforme remains a challenging problem despite recent advances in targeted therapies. Timely assessment of therapeutic agents is hindered by the lack of standard quantitative imaging protocols for determining targeted response. Clinical response assessment for brain tumors is determined by volumetric changes assessed at 10 weeks post-treatment initiation. Further, current clinical criteria fail to use advanced quantitative imaging approaches, such as diffusion and perfusion magnetic resonance imaging. Development of the parametric response mapping (PRM) applied to diffusion-weighted magnetic resonance imaging has provided a sensitive and early biomarker of successful cytotoxic therapy in brain tumors while maintaining a spatial context within the tumor. Although PRM provides an earlier readout than volumetry and sometimes greater sensitivity compared with traditional whole-tumor diffusion statistics, it is not routinely used for patient management; an automated and standardized software for performing the analysis and for the generation of a clinical report document is required for this. We present a semiautomated and seamless workflow for image coregistration, segmentation, and PRM classification of glioblastoma multiforme diffusion-weighted magnetic resonance imaging scans. The software solution can be integrated using local hardware or performed remotely in the cloud while providing connectivity to existing picture archive and communication systems. This is an important step toward implementing PRM analysis of solid tumors in routine clinical practice.

18.
Tomography ; 1(1): 44-52, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26568982

RESUMEN

Quantitative magnetic resonance imaging (MRI)-based biomarkers, which capture physiological and functional tumor processes, were evaluated as imaging surrogates of early tumor response following chemoradiotherapy in glioma patients. A multiparametric extension of a voxel-based analysis, referred as the parametric response map (PRM), was applied to quantitative MRI maps to test the predictive potential of this metric for detecting response. Fifty-six subjects with newly diagnosed high-grade gliomas treated with radiation and concurrent temozolomide were enrolled in a single-site prospective institutional review board-approved MRI study. Apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) maps were acquired before therapy and 3 weeks after therapy was initiated. Multiparametric PRM (mPRM) was applied to both physiological MRI maps and evaluated as an imaging biomarker of patient survival. For comparison, single-biomarker PRMs were also evaluated in this study. The simultaneous analysis of ADC and rCBV by the mPRM approach was found to improve the predictive potential for patient survival over single PRM measures. With an array of quantitative imaging parameters being evaluated as biomarkers of therapeutic response, mPRM shows promise as a new methodology for consolidating physiologically distinct imaging parameters into a single interpretable and quantitative metric.

19.
Tomography ; 1(2): 98-104, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26771006

RESUMEN

Pathologic vertebral compression fractures (PVCF) cause significant morbidity in patients with bone metastases from breast cancer and other malignancies. Due to limitations of existing biochemical and imaging biomarkers, clinicians currently have no reliable metrics to identify patients with impending PVCF, impeding efforts to prevent this severe complication. To establish the feasibility of a new method for defining risk of PVCF, we retrospectively analyzed serial CT scans from five breast cancer patients using parametric response mapping (PRM) to quantify dynamic bone density changes that preceded an event. Vertebrae segmented from each scan were registered to vertebrae at the earliest time point (i.e. furthest from PVCF) and voxel classification accomplished using a predetermined threshold of change in HU values, resulting in relative volumes of increased (PRMHU+), decreased (PRMHU-), or unchanged (PRMHU0) attenuation. A total of seven PVCF were compared to un-diseased vertebrae in each patient serving as controls. Receiver operator curve (ROC) analysis identified optimal image acquisition and analysis times for group stratification. Bone density changes were visualized by an increasing trend in PRMHU+ as early as one year before fracture. PRMHU- demonstrated negligible changes over the course of the study. These observations were consistent with ROC results, showing poor performance of PRMHU- in stratifying PVCF versus control. As early as 6 months prior to PVCF, PRMHU+ was significantly larger (12.9 ± 11.6%) compared to control vertebrae (2.3 ± 2.5%), with an AUC of 0.918 from a receiver operator curve analysis. Mean HU changes were also significant between PVCF (+26.8 ± 26.9%) and control (-2.2 ± 22.0%) over the same period. PRM analysis of bone density changes using standard CT imaging was sensitive for spatially resolving bone remodeling which preceded structural failure in patients with breast cancer vertebral metastases.

20.
Tomography ; 1(1): 69-77, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26568983

RESUMEN

Parametric response mapping (PRM) of inspiration and expiration computed tomography (CT) images improves the radiological phenotyping of chronic obstructive pulmonary disease (COPD). PRM classifies individual voxels of lung parenchyma as normal, emphysematous, or nonemphysematous air trapping. In this study, bias and noise characteristics of the PRM methodology to CT and clinical procedures were evaluated to determine best practices for this quantitative technique. Twenty patients of varying COPD status with paired volumetric inspiration and expiration CT scans of the lungs were identified from the baseline COPD-Gene cohort. The impact of CT scanner manufacturer and reconstruction kernels were evaluated as potential sources of variability in PRM measurements along with simulations to quantify the impact of inspiration/expiration lung volume levels, misregistration, and image spacing on PRM measurements. Negligible variation in PRM metrics was observed when CT scanner type and reconstruction were consistent and inspiration/expiration lung volume levels were near target volumes. CT scanner Hounsfield unit drift occurred but remained difficult to ameliorate. Increasing levels of image misregistration and CT slice spacing were found to have a minor effect on PRM measurements. PRM-derived values were found to be most sensitive to lung volume levels and mismatched reconstruction kernels. As with other quantitative imaging techniques, reliable PRM measurements are attainable when consistent clinical and CT protocols are implemented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA