Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 167(3): 843-857.e14, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27720451

RESUMEN

Glucagon and thyroid hormone (T3) exhibit therapeutic potential for metabolic disease but also exhibit undesired effects. We achieved synergistic effects of these two hormones and mitigation of their adverse effects by engineering chemical conjugates enabling delivery of both activities within one precisely targeted molecule. Coordinated glucagon and T3 actions synergize to correct hyperlipidemia, steatohepatitis, atherosclerosis, glucose intolerance, and obesity in metabolically compromised mice. We demonstrate that each hormonal constituent mutually enriches cellular processes in hepatocytes and adipocytes via enhanced hepatic cholesterol metabolism and white fat browning. Synchronized signaling driven by glucagon and T3 reciprocally minimizes the inherent harmful effects of each hormone. Liver-directed T3 action offsets the diabetogenic liability of glucagon, and glucagon-mediated delivery spares the cardiovascular system from adverse T3 action. Our findings support the therapeutic utility of integrating these hormones into a single molecular entity that offers unique potential for treatment of obesity, type 2 diabetes, and cardiovascular disease.


Asunto(s)
Glucagón/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Triyodotironina/efectos de los fármacos , Animales , Aterosclerosis/tratamiento farmacológico , Peso Corporal/efectos de los fármacos , Huesos/efectos de los fármacos , Ingeniería Química/métodos , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Combinación de Medicamentos , Sistemas de Liberación de Medicamentos , Sinergismo Farmacológico , Glucagón/efectos adversos , Glucagón/química , Glucagón/farmacología , Hiperglucemia/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Terapia Molecular Dirigida , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Triyodotironina/efectos adversos , Triyodotironina/química , Triyodotironina/farmacología
2.
EMBO Rep ; 24(10): e55981, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37560809

RESUMEN

Accumulation of excess nutrients hampers proper liver function and is linked to nonalcoholic fatty liver disease (NAFLD) in obesity. However, the signals responsible for an impaired adaptation of hepatocytes to obesogenic dietary cues remain still largely unknown. Post-translational modification by the small ubiquitin-like modifier (SUMO) allows for a dynamic regulation of numerous processes including transcriptional reprogramming. We demonstrate that specific SUMOylation of transcription factor Prox1 represents a nutrient-sensitive determinant of hepatic fasting metabolism. Prox1 is highly SUMOylated on lysine 556 in the liver of ad libitum and refed mice, while this modification is abolished upon fasting. In the context of diet-induced obesity, Prox1 SUMOylation becomes less sensitive to fasting cues. The hepatocyte-selective knock-in of a SUMOylation-deficient Prox1 mutant into mice fed a high-fat/high-fructose diet leads to a reduction of systemic cholesterol levels, associated with the induction of liver bile acid detoxifying pathways during fasting. The generation of tools to maintain the nutrient-sensitive SUMO-switch on Prox1 may thus contribute to the development of "fasting-based" approaches for the preservation of metabolic health.

3.
Diabetologia ; 66(5): 873-883, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36790478

RESUMEN

AIMS/HYPOTHESIS: Although insulin resistance often leads to type 2 diabetes mellitus, its early stages are often unrecognised, thus reducing the probability of successful prevention and intervention. Moreover, treatment efficacy is affected by the genetics of the individual. We used gene expression profiles from a cross-sectional study to identify potential candidate genes for the prediction of diabetes risk and intervention response. METHODS: Using a multivariate regression model, we linked gene expression profiles of human skeletal muscle and intermuscular adipose tissue (IMAT) to fasting glucose levels and glucose infusion rate. Based on the expression patterns of the top predictive genes, we characterised and compared individual gene expression with clinical classifications using k-nearest neighbour clustering. The predictive potential of the candidate genes identified was validated using muscle gene expression data from a longitudinal intervention study. RESULTS: We found that genes with a strong association with clinical measures clustered into three distinct expression patterns. Their predictive values for insulin resistance varied substantially between skeletal muscle and IMAT. Moreover, we discovered that individual gene expression-based classifications may differ from classifications based predominantly on clinical variables, indicating that participant stratification may be imprecise if only clinical variables are used for classification. Of the 15 top candidate genes, ST3GAL2, AASS, ARF1 and the transcription factor SIN3A are novel candidates for predicting a refined diabetes risk and intervention response. CONCLUSION/INTERPRETATION: Our results confirm that disease progression and successful intervention depend on individual gene expression states. We anticipate that our findings may lead to a better understanding and prediction of individual diabetes risk and may help to develop individualised intervention strategies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Pronóstico , Estudios Transversales , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Glucosa/metabolismo , Biomarcadores/metabolismo , Perfilación de la Expresión Génica
4.
Cardiovasc Diabetol ; 22(1): 217, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592302

RESUMEN

BACKGROUND: Agonism at the receptor for the glucose-dependent insulinotropic polypeptide (GIPR) is a key component of the novel unimolecular GIPR:GLP-1R co-agonists, which are among the most promising drugs in clinical development for the treatment of obesity and type 2 diabetes. The therapeutic effect of chronic GIPR agonism to treat dyslipidemia and thus to reduce the cardiovascular disease risk independently of body weight loss has not been explored yet. METHODS: After 8 weeks on western diet, LDL receptor knockout (LDLR-/-) male mice were treated with daily subcutaneous injections of long-acting acylated GIP analog (acyl-GIP; 10nmol/kg body weight) for 28 days. Body weight, food intake, whole-body composition were monitored throughout the study. Fasting blood glucose and intraperitoneal glucose tolerance test (ipGTT) were determined on day 21 of the study. Circulating lipid levels, lipoprotein profiles and atherosclerotic lesion size was assessed at the end of the study. Acyl-GIP effects on fat depots were determined by histology and transcriptomics. RESULTS: Herein we found that treatment with acyl-GIP reduced dyslipidemia and atherogenesis in male LDLR-/- mice. Acyl-GIP administration resulted in smaller adipocytes within the inguinal fat depot and RNAseq analysis of the latter revealed that acyl-GIP may improve dyslipidemia by directly modulating lipid metabolism in this fat depot. CONCLUSIONS: This study identified an unanticipated efficacy of chronic GIPR agonism to improve dyslipidemia and cardiovascular disease independently of body weight loss, indicating that treatment with acyl-GIP may be a novel approach to alleviate cardiometabolic disease.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Dislipidemias , Masculino , Animales , Ratones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/prevención & control , Dislipidemias/tratamiento farmacológico , Peso Corporal , Pérdida de Peso
5.
Neuroendocrinology ; 111(3): 263-272, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32422642

RESUMEN

BACKGROUND: In peripheral tissues, the lipid droplet (LD) organelle links lipid metabolism, inflammation, and insulin resistance. Little is known about the brain LDs. OBJECTIVES: We hypothesized that hypothalamic LDs would be altered in metabolic diseases. METHODS: We used immunofluorescence labeling of the specific LD protein, PLIN2, as the approach to visualize and quantify LDs. RESULTS: LDs were abundant in the hypothalamic third ventricle wall layer with similar heterogeneous distributions between control mice and humans. The LD content was enhanced by high-fat diet (HFD) in both wild-type and in low-density lipoprotein receptor deficient (Ldlr -/- HFD) mice. Strikingly, we observed a lower LD amount in type 2 diabetes mellitus (T2DM) patients when compared with non-T2DM patients. CONCLUSIONS: LDs accumulate in the normal hypothalamus, with similar distributions in human and mouse. Moreover, metabolic diseases differently modify LD content in mouse and human. Our results suggest that hypothalamic LD accumulation is an important target to the study of metabolism.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Hipotálamo/metabolismo , Resistencia a la Insulina/fisiología , Gotas Lipídicas/metabolismo , Perilipina-2/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Autopsia , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de LDL/deficiencia , Bancos de Tejidos
6.
Diabetes Obes Metab ; 23(1): 195-207, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33001570

RESUMEN

AIMS: Unimolecular peptides targeting the receptors for glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) (GLP-1/GIP co-agonist) have been shown to outperform each single peptide in the treatment of obesity and cardiometabolic disease in preclinical and clinical trials. By combining physiological treatment endpoints with plasma proteomic profiling (PPP), we aimed to identify biomarkers to advance non-invasive metabolic monitoring of compound treatment success and exploration of ulterior treatment effects on an individual basis. MATERIALS AND METHODS: We performed metabolic phenotyping along with PPP in body weight-matched male and female diet-induced obese (DIO) mice treated for 21 days with phosphate-buffered saline, single GIP and GLP-1 mono-agonists, or a GLP-1/GIP co-agonist. RESULTS: GLP-1R/GIPR co-agonism improved obesity, glucose intolerance, non-alcoholic fatty liver disease (NAFLD) and dyslipidaemia with superior efficacy in both male and female mice compared with mono-agonist treatments. PPP revealed broader changes of plasma proteins after GLP-1/GIP co-agonist compared with mono-agonist treatments in both sexes, including established and potential novel biomarkers for systemic inflammation, NAFLD and atherosclerosis. Subtle sex-specific differences have been observed in metabolic phenotyping and PPP. CONCLUSIONS: We herein show that a recently developed unimolecular GLP-1/GIP co-agonist is more efficient in improving metabolic disease than either mono-agonist in both sexes. PPP led to the identification of a sex-independent protein panel with the potential to monitor non-invasively the treatment efficacies on metabolic function of this clinically advancing GLP-1/GIP co-agonist.


Asunto(s)
Incretinas , Proteoma , Animales , Dieta , Femenino , Polipéptido Inhibidor Gástrico , Receptor del Péptido 1 Similar al Glucagón , Masculino , Ratones , Ratones Obesos , Obesidad/tratamiento farmacológico , Proteómica , Resultado del Tratamiento
7.
Mol Syst Biol ; 15(3): e8793, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824564

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) affects 25% of the population and can progress to cirrhosis with limited treatment options. As the liver secretes most of the blood plasma proteins, liver disease may affect the plasma proteome. Plasma proteome profiling of 48 patients with and without cirrhosis or NAFLD revealed six statistically significantly changing proteins (ALDOB, APOM, LGALS3BP, PIGR, VTN, and AFM), two of which are already linked to liver disease. Polymeric immunoglobulin receptor (PIGR) was significantly elevated in both cohorts by 170% in NAFLD and 298% in cirrhosis and was further validated in mouse models. Furthermore, a global correlation map of clinical and proteomic data strongly associated DPP4, ANPEP, TGFBI, PIGR, and APOE with NAFLD and cirrhosis. The prominent diabetic drug target DPP4 is an aminopeptidase like ANPEP, ENPEP, and LAP3, all of which are up-regulated in the human or mouse data. Furthermore, ANPEP and TGFBI have potential roles in extracellular matrix remodeling in fibrosis. Thus, plasma proteome profiling can identify potential biomarkers and drug targets in liver disease.


Asunto(s)
Biomarcadores/sangre , Cirrosis Hepática/sangre , Enfermedad del Hígado Graso no Alcohólico/sangre , Proteoma , Proteómica , Animales , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Humanos , Hígado/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo
8.
Am J Physiol Endocrinol Metab ; 316(5): E866-E879, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30620635

RESUMEN

Intermuscular adipose tissue (IMAT) is negatively related to insulin sensitivity, but a causal role of IMAT in the development of insulin resistance is unknown. IMAT was sampled in humans to test for the ability to induce insulin resistance in vitro and characterize gene expression to uncover how IMAT may promote skeletal muscle insulin resistance. Human primary muscle cells were incubated with conditioned media from IMAT, visceral (VAT), or subcutaneous adipose tissue (SAT) to evaluate changes in insulin sensitivity. RNAseq analysis was performed on IMAT with gene expression compared with skeletal muscle and SAT, and relationships to insulin sensitivity were determined in men and women spanning a wide range of insulin sensitivity measured by hyperinsulinemic-euglycemic clamp. Conditioned media from IMAT and VAT decreased insulin sensitivity similarly compared with SAT. Multidimensional scaling analysis revealed distinct gene expression patterns in IMAT compared with SAT and muscle. Pathway analysis revealed that IMAT expression of genes in insulin signaling, oxidative phosphorylation, and peroxisomal metabolism related positively to donor insulin sensitivity, whereas expression of macrophage markers, inflammatory cytokines, and secreted extracellular matrix proteins were negatively related to insulin sensitivity. Perilipin 5 gene expression suggested greater IMAT lipolysis in insulin-resistant individuals. Combined, these data show that factors secreted from IMAT modulate muscle insulin sensitivity, possibly via secretion of inflammatory cytokines and extracellular matrix proteins, and by increasing local FFA concentration in humans. These data suggest IMAT may be an important regulator of skeletal muscle insulin sensitivity and could be a novel therapeutic target for skeletal muscle insulin resistance.


Asunto(s)
Tejido Adiposo/metabolismo , Resistencia a la Insulina/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Adulto , Atletas , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnica de Clampeo de la Glucosa , Humanos , Grasa Intraabdominal/metabolismo , Masculino , Persona de Mediana Edad , Obesidad/metabolismo , Cultivo Primario de Células , Conducta Sedentaria , Análisis de Secuencia de ARN , Grasa Subcutánea/metabolismo
9.
Int J Mol Sci ; 20(21)2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31671603

RESUMEN

Glucagon's ability to increase energy expenditure has been known for more than 60 years, yet the mechanisms underlining glucagon's thermogenic effect still remain largely elusive. Over the last years, significant efforts were directed to unravel the physiological and cellular underpinnings of how glucagon regulates energy expenditure. In this review, we summarize the current knowledge on how glucagon regulates systems metabolism with a special emphasis on its acute and chronic thermogenic effects.


Asunto(s)
Metabolismo Energético , Glucagón/metabolismo , Animales , Humanos , Termogénesis
10.
J Lipid Res ; 59(9): 1649-1659, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29991652

RESUMEN

Meta-inflammation of hypothalamic areas governing energy homeostasis has recently emerged as a process of potential pathophysiological relevance for the development of obesity and its metabolic sequelae. The current model suggests that diet-induced neuronal injury triggers microgliosis and astrocytosis, conditions which ultimately may induce functional impairment of hypothalamic circuits governing feeding behavior, systemic metabolism, and body weight. Epidemiological data indicate that low circulating HDL levels, besides conveying cardiovascular risk, also correlate strongly with obesity. We simulated that condition by using a genetic loss of function mouse model (apoA-I-/-) with markedly reduced HDL levels to investigate whether HDL may directly modulate hypothalamic inflammation. Astrogliosis was significantly enhanced in the hypothalami of apoA-I-/- compared with apoA-I+/+ mice and was associated with compromised mitochondrial function. apoA-I-/- mice exhibited key components of metabolic disease, like increased fat mass, fasting glucose levels, hepatic triglyceride content, and hepatic glucose output compared with apoA-I+/+ controls. Administration of reconstituted HDL (CSL-111) normalized hypothalamic inflammation and mitochondrial function markers in apoA-I-/- mice. Treatment of primary astrocytes with apoA-I resulted in enhanced mitochondrial activity, implying that circulating HDL levels are likely important for astrocyte function. HDL-based therapies may consequently avert reactive gliosis in hypothalamic astrocytes by improving mitochondrial bioenergetics and thereby offering potential treatment and prevention for obesity and metabolic disease.


Asunto(s)
Apolipoproteína A-I/metabolismo , Gliosis/metabolismo , Gliosis/patología , Hipotálamo/patología , Lipoproteínas HDL/sangre , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Biomarcadores/metabolismo , Gliosis/sangre , Glucólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/patología , Fosforilación Oxidativa , Fenotipo
11.
FASEB J ; 28(2): 761-70, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24200885

RESUMEN

Mitochondrial dysfunction in white adipose tissue plays a key role in the pathogenesis of type 2 diabetes. Emerging evidence specifically suggests that altered oxidative phosphorylation in adipocytes may have a relevant effect on systemic glucose homeostasis, requiring understanding of adipocyte bioenergetics. We analyzed energetic flux of an intact human adipocyte cell model by plate-based respirometry and extracellular acidification. During differentiation, we discovered that glycolytic ATP production was increasingly replaced by mitochondrial oxidative metabolism (from 20 to 60%). This observation was corroborated by simultaneous up-regulation of canonical mitochondrial gene programs, such as peroxisome proliferator-activated receptor γ coactivator α (PGC1α; 150-fold) and cytochrome c-1 (CytC; 3-fold). Mimicking diabetic phenotypes by exposure to various glucose levels (0, 5, and 25 mM) resulted in immediate adjustments of glycolytic and mitochondrial activity that aimed to maintain intracellular ATP. We conclude that ATP deficits by mitochondrial failure are compensated by glycolytic ATP production, resulting in inefficient conversion of glucose to cellular ATP. Metabolic inefficiency may enhance glucose uptake, therefore improving systemic glucose homeostasis. Notably, mature adipocytes developed a high spare respiratory capacity (increased by 6-fold) permitting rapid adaptation to metabolic changes. Spare respiratory capacity may also allow additional metabolic scope for energy dissipation, potentially offering new therapeutic targets for the treatment of metabolic disease.


Asunto(s)
Adenosina Trifosfato/metabolismo , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Células Cultivadas , Citocromos c1/metabolismo , Glucosa/farmacología , Glucólisis , Humanos , Fosforilación Oxidativa , PPAR gamma/metabolismo
12.
Circulation ; 128(22): 2364-71, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24170386

RESUMEN

BACKGROUND: Abnormal glucose metabolism is a central feature of disorders with increased rates of cardiovascular disease. Low levels of high-density lipoprotein (HDL) are a key predictor for cardiovascular disease. We used genetic mouse models with increased HDL levels (apolipoprotein A-I transgenic [apoA-I tg]) and reduced HDL levels (apoA-I-deficient [apoA-I ko]) to investigate whether HDL modulates mitochondrial bioenergetics in skeletal muscle. METHODS AND RESULTS: ApoA-I ko mice exhibited fasting hyperglycemia and impaired glucose tolerance test compared with wild-type mice. Mitochondria isolated from gastrocnemius muscle of apoA-I ko mice displayed markedly blunted ATP synthesis. Endurance capacity during exercise exhaustion test was impaired in apoA-I ko mice. HDL directly enhanced glucose oxidation by increasing glycolysis and mitochondrial respiration rate in C2C12 muscle cells. ApoA-I tg mice exhibited lower fasting glucose levels, improved glucose tolerance test, increased lactate levels, reduced fat mass, associated with protection against age-induced decline of endurance capacity compared with wild-type mice. Circulating levels of fibroblast growth factor 21, a novel biomarker for mitochondrial respiratory chain deficiencies and inhibitor of white adipose lipolysis, were significantly reduced in apoA-I tg mice. Consistent with an increase in glucose utilization of skeletal muscle, genetically increased HDL and apoA-I levels in mice prevented high-fat diet-induced impairment of glucose homeostasis. CONCLUSIONS: In view of impaired mitochondrial function and decreased HDL levels in type 2 diabetes mellitus, our findings indicate that HDL-raising therapies may preserve muscle mitochondrial function and address key aspects of type 2 diabetes mellitus beyond cardiovascular disease.


Asunto(s)
Glucemia/metabolismo , Intolerancia a la Glucosa/metabolismo , Hiperglucemia/metabolismo , Lipoproteínas HDL/metabolismo , Músculo Esquelético/metabolismo , Animales , Apolipoproteína A-I/genética , Respiración de la Célula/fisiología , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos no Esterificados/sangre , Factores de Crecimiento de Fibroblastos/sangre , Homeostasis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Musculares/metabolismo , Resistencia Física/fisiología
13.
Lang Speech ; : 238309231223736, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693788

RESUMEN

This paper presents L2 vowel remediation in a classroom setting via two real-time visual feedback methods: articulatory ultrasound tongue imaging, which shows tongue shape and position, and a newly developed acoustic formant analyzer, which visualizes a point correlating with the combined effect of tongue position and lip rounding in a vowel quadrilateral. Ten Czech students of the Swedish language participated in the study. Swedish vowel production is difficult for Czech speakers since the languages differ significantly in their vowel systems. The students selected the vowel targets on their own and practiced in two classroom groups, with six students receiving two ultrasound training lessons, followed by one acoustic, and four students receiving two acoustic lessons, followed by one ultrasound. Audio data were collected pre-training, after the two sessions employing the first visual feedback method, and at post-training, allowing measuring Euclidean distance among selected groups of vowels and observing the direction of change within the vowel quadrilateral as a result of practice. Perception tests were performed before and after training, revealing that most learners perceived selected vowels correctly already before the practice. The study showed that both feedback methods can be successfully applied to L2 classroom learning, and both lead to the improvement in the pronunciation of the selected vowels, as well as the Swedish vowel set as a whole. However, ultrasound tongue imaging seems to have an advantage as it resulted in a greater number of improved targets.

14.
Mol Metab ; 83: 101915, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492844

RESUMEN

OBJECTIVE: The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr). METHODS: Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis. Mice with deletion of Gipr in Lepr cells were generated and metabolically characterized for alterations in diet-induced obesity (DIO), glucose control and leptin sensitivity. Long-acting single- and dual-agonists at GIPR and GLP-1R were further used to assess drug effects on energy and glucose metabolism in DIO wildtype (WT) and Lepr-Gipr knock-out (KO) mice. RESULTS: Gipr and Lepr show strong co-expression in the pancreas, but not in the hypothalamus and hindbrain. DIO Lepr-Gipr KO mice are indistinguishable from WT controls related to body weight, food intake and diet-induced leptin resistance. Acyl-GIP and the GIPR:GLP-1R co-agonist MAR709 remain fully efficacious to decrease body weight and food intake in DIO Lepr-Gipr KO mice. Consistent with the demonstration that Gipr and Lepr highly co-localize in the endocrine pancreas, including the ß-cells, we find the superior glycemic effect of GIPR:GLP-1R co-agonism over single GLP-1R agonism to vanish in Lepr-Gipr KO mice. CONCLUSIONS: GIPR signaling in cells/neurons that express the leptin receptor is not implicated in the control of body weight or food intake, but is of crucial importance for the superior glycemic effects of GIPR:GLP-1R co-agonism relative to single GLP-1R agonism.


Asunto(s)
Peso Corporal , Ingestión de Alimentos , Polipéptido Inhibidor Gástrico , Ratones Noqueados , Obesidad , Receptores de la Hormona Gastrointestinal , Receptores de Leptina , Animales , Masculino , Ratones , Polipéptido Inhibidor Gástrico/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/genética , Glucosa/metabolismo , Leptina/metabolismo , Ratones Endogámicos C57BL , Obesidad/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores de la Hormona Gastrointestinal/genética , Receptores de Leptina/metabolismo , Receptores de Leptina/genética , Transducción de Señal
15.
Photoacoustics ; 29: 100454, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36794122

RESUMEN

Hepatic steatosis is characterized by intrahepatic lipid accumulation and may lead to irreversible liver damage if untreated. Here, we investigate whether multispectral optoacoustic tomography (MSOT) can offer label-free detection of liver lipid content to enable non-invasive characterization of hepatic steatosis by analyzing the spectral region around 930 nm, where lipids characteristically absorb. In a pilot study, we apply MSOT to measure liver and surrounding tissues in five patients with liver steatosis and five healthy volunteers, revealing significantly higher absorptions at 930 nm in the patients, while no significant difference was observed in the subcutaneous adipose tissue of the two groups. We further corroborated the human observations with corresponding MSOT measurements in high fat diet (HFD) - and regular chow diet (CD)-fed mice. This study introduces MSOT as a potential non-invasive and portable technique for detecting/monitoring hepatic steatosis in clinical settings, providing justification for larger studies.

16.
Cell Metab ; 35(10): 1736-1751.e7, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37734370

RESUMEN

Muscle-residing regulatory T cells (Tregs) control local tissue integrity and function. However, the molecular interface connecting Treg-based regulation with muscle function and regeneration remains largely unexplored. Here, we show that exercise fosters a stable induction of highly functional muscle-residing Tregs with increased expression of amphiregulin (Areg), EGFR, and ST2. Mechanistically, we find that mice lacking IL6Rα on T cells (TKO) harbor significant reductions in muscle Treg functionality and satellite and fibro-adipogenic progenitor cells, which are required for muscle regeneration. Using exercise and sarcopenia models, IL6Rα TKO mice demonstrate deficits in Tregs, their functional maturation, and a more pronounced decline in muscle mass. Muscle injury models indicate that IL6Rα TKO mice have significant disabilities in muscle regeneration. Treg gain of function restores impaired muscle repair in IL6Rα TKO mice. Of note, pharmacological IL6R blockade in WT mice phenocopies deficits in muscle function identified in IL6Rα TKO mice, thereby highlighting the clinical implications of the findings.


Asunto(s)
Músculo Esquelético , Linfocitos T Reguladores , Ratones , Animales , Linfocitos T Reguladores/metabolismo , Músculo Esquelético/metabolismo , Transducción de Señal , Adipogénesis , Receptores de Interleucina-6/metabolismo
17.
Nat Metab ; 5(12): 2075-2085, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37946085

RESUMEN

The development of single-molecule co-agonists for the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) is considered a breakthrough in the treatment of obesity and type 2 diabetes. But although GIPR-GLP-1R co-agonism decreases body weight with superior efficacy relative to GLP-1R agonism alone in preclinical1-3 and clinical studies4,5, the role of GIP in regulating energy metabolism remains enigmatic. Increasing evidence suggests that long-acting GIPR agonists act in the brain to decrease body weight through the inhibition of food intake3,6-8; however, the mechanisms and neuronal populations through which GIP affects metabolism remain to be identified. Here, we report that long-acting GIPR agonists and GIPR-GLP-1R co-agonists decrease body weight and food intake via inhibitory GABAergic neurons. We show that acyl-GIP decreases body weight and food intake in male diet-induced obese wild-type mice, but not in mice with deletion of Gipr in Vgat(also known as Slc32a1)-expressing GABAergic neurons (Vgat-Gipr knockout). Whereas the GIPR-GLP-1R co-agonist MAR709 leads, in male diet-induced obese wild-type mice, to greater weight loss and further inhibition of food intake relative to a pharmacokinetically matched acyl-GLP-1 control, this superiority over GLP-1 vanishes in Vgat-Gipr knockout mice. Our data demonstrate that long-acting GIPR agonists crucially depend on GIPR signaling in inhibitory GABAergic neurons to decrease body weight and food intake.


Asunto(s)
Diabetes Mellitus Tipo 2 , Masculino , Ratones , Animales , Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Obesidad/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptores Acoplados a Proteínas G , Glucosa , Neuronas GABAérgicas/metabolismo , Ingestión de Alimentos
18.
J Biol Chem ; 286(15): 13079-87, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21343303

RESUMEN

The low density lipoprotein receptor-related protein-1 (LRP1) is known to serve as a chylomicron remnant receptor in the liver responsible for the binding and plasma clearance of apolipoprotein E-containing lipoproteins. Previous in vitro studies have provided evidence to suggest that LRP1 expression may also influence high density lipoprotein (HDL) metabolism. The current study showed that liver-specific LRP1 knock-out (hLrp1(-/-)) mice displayed lower fasting plasma HDL cholesterol levels when compared with hLrp1(+/+) mice. Lecithin:cholesterol acyl transferase and hepatic lipase activities in plasma of hLrp1(-/-) mice were comparable with those observed in hLrp1(+/+) mice, indicating that hepatic LRP1 inactivation does not influence plasma HDL remodeling. Plasma clearance of HDL particles and HDL-associated cholesteryl esters was also similar between hLrp1(+/+) and hLrp1(-/-) mice. In contrast, HDL secretion from primary hepatocytes isolated from hLrp1(-/-) mice was significantly reduced when compared with that observed with hLrp1(+/+) hepatocytes. Biotinylation of cell surface proteins revealed decreased surface localization of the ATP-binding cassette, subfamily A, member 1 (ABCA1) protein, but total cellular ABCA1 level was not changed in hLrp1(-/-) hepatocytes. Finally, hLrp1(-/-) hepatocytes displayed reduced binding capacity for extracellular cathepsin D, resulting in lower intracellular cathepsin D content and impairment of prosaposin activation, a process that is required for membrane translocation of ABCA1 to facilitate cholesterol efflux and HDL secretion. Taken together, these results documented that hepatic LRP1 participates in cellular activation of lysosomal enzymes and through this mechanism, indirectly modulates the production and plasma levels of HDL.


Asunto(s)
Membrana Celular/metabolismo , Hepatocitos/metabolismo , Lipoproteínas HDL/sangre , Hígado/metabolismo , Lisosomas/metabolismo , Receptores de LDL/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Catepsina D/genética , Catepsina D/metabolismo , Membrana Celular/genética , Ayuno/sangre , Lipasa/genética , Lipasa/metabolismo , Lipoproteínas HDL/genética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Lisosomas/genética , Ratones , Ratones Noqueados , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Transporte de Proteínas/fisiología , Receptores de LDL/genética , Saposinas/genética , Saposinas/metabolismo , Proteínas Supresoras de Tumor/genética
19.
Gastroenterology ; 141(3): 939-949.e1-4, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21699773

RESUMEN

BACKGROUND & AIMS: Postprandial hyperlipidemia is a risk factor for atherosclerotic heart disease and is associated with the consumption of high-fat diets and obesity. Bariatric surgeries result in superior and more durable weight loss than dieting. These surgeries are also associated with multiple metabolic improvements, including reduced plasma lipid levels. We investigated whether the beneficial effects of vertical sleeve gastrectomy (VSG) on plasma lipid levels are weight independent. METHODS: VSG was performed on Long-Evans rats with diet-induced obesity. Controls were sham-operated animals who were either pair-fed or ad libitum-fed. We measured fasting and postprandial levels of plasma lipid. To determine hepatic and intestinal triglyceride secretion, we injected the lipase inhibitor poloxamer 407 alone or before oral lipid gavage. (13)C-Triolein was used to estimate postprandial uptake of lipid in the intestine. RESULTS: Rats that received VSG and high-fat diets had markedly lower fasting levels of plasma triglyceride, cholesterol, and phospholipid than obese and lean (pair-fed) controls that were fed high-fat diets. Rats that received VSG had a marked, weight-independent reduction in secretion of intestinal triglycerides. VSG did not alter total intestinal triglyceride levels or size of the cholesterol storage pool nor did it affect the expression of genes in the intestine that control triglyceride metabolism and synthesis. VSG did not affect fasting secretion of triglyceride, liver weight, hepatic lipid storage, or transcription of genes that regulate hepatic lipid processing. CONCLUSIONS: VSG reduced postprandial levels of plasma lipid, independently of body weight. This resulted from reduced intestinal secretion of triglycerides following ingestion of a lipid meal and indicates that VSG has important effects on metabolism.


Asunto(s)
Gastrectomía/métodos , Mucosa Intestinal/metabolismo , Lípidos/sangre , Obesidad/metabolismo , Obesidad/cirugía , Periodo Posprandial/fisiología , Triglicéridos/metabolismo , Animales , Peso Corporal/fisiología , Grasas de la Dieta/efectos adversos , Modelos Animales de Enfermedad , Hiperlipidemias/sangre , Hiperlipidemias/prevención & control , Metabolismo de los Lípidos/fisiología , Masculino , Obesidad/inducido químicamente , Ratas , Ratas Long-Evans , Estómago/cirugía
20.
Curr Opin Lipidol ; 22(4): 283-7, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21734571

RESUMEN

PURPOSE OF REVIEW: The increasing incidence of obesity and diabetes worldwide are critical risk factors for the development of cardiovascular disease. Although the role of the central nervous system (CNS) in the control of fat mass and glucose metabolism has been studied in detail, less is known about the contribution of neural-derived signals in the development of systemic dyslipidemia. In this review we summarize and analyze evidence suggesting a specific role of the CNS in the control of systemic cholesterol metabolism and circulating plasma lipids levels. RECENT FINDINGS: Although early reports based in lesions or electrical stimulation suggested a role for CNS-derived signals in the development of dyslipidemia, more recent findings have confirmed the involvement of specific neural pathways critical for the neuroendocrine control of cholesterol metabolism and plasma lipid levels. SUMMARY: The identification of the pathways targeted by the CNS to control plasma lipid levels could offer alternative targets to create efficient novel therapies for the treatment of several metabolic syndrome components including dyslipidemia.


Asunto(s)
Colesterol/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Humanos , Lipoproteínas HDL/metabolismo , Lipoproteínas VLDL/metabolismo , Hígado/metabolismo , Hígado/fisiopatología , Neuropéptido Y/metabolismo , Sistemas Neurosecretores/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA