Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 324(4): R457-R469, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36717165

RESUMEN

Sympathetic transduction is reduced following chronic high-altitude (HA) exposure; however, vascular α-adrenergic signaling, the primary mechanism mediating sympathetic vasoconstriction at sea level (SL), has not been examined at HA. In nine male lowlanders, we measured forearm blood flow (Doppler ultrasound) and calculated changes in vascular conductance (ΔFVC) during 1) incremental intra-arterial infusion of phenylephrine to assess α1-adrenergic receptor responsiveness and 2) combined intra-arterial infusion of ß-adrenergic and α-adrenergic antagonists propranolol and phentolamine (α-ß-blockade) to assess adrenergic vascular restraint at rest and during exercise-induced sympathoexcitation (cycling; 60% peak power). Experiments were performed near SL (344 m) and after 3 wk at HA (4,383 m). HA abolished the vasoconstrictor response to low-dose phenylephrine (ΔFVC: SL: -34 ± 15%, vs. HA; +3 ± 18%; P < 0.0001) and markedly attenuated the response to medium (ΔFVC: SL: -45 ± 18% vs. HA: -28 ± 11%; P = 0.009) and high (ΔFVC: SL: -47 ± 20%, vs. HA: -35 ± 20%; P = 0.041) doses. Blockade of ß-adrenergic receptors alone had no effect on resting FVC (P = 0.500) and combined α-ß-blockade induced a similar vasodilatory response at SL and HA (P = 0.580). Forearm vasoconstriction during cycling was not different at SL and HA (P = 0.999). Interestingly, cycling-induced forearm vasoconstriction was attenuated by α-ß-blockade at SL (ΔFVC: Control: -27 ± 128 vs. α-ß-blockade: +19 ± 23%; P = 0.0004), but unaffected at HA (ΔFVC: Control: -20 ± 22 vs. α-ß-blockade: -23 ± 11%; P = 0.999). Our results indicate that in healthy males, altitude acclimatization attenuates α1-adrenergic receptor responsiveness; however, resting α-adrenergic restraint remains intact, due to concurrent resting sympathoexcitation. Furthermore, forearm vasoconstrictor responses to cycling are preserved, although the contribution of adrenergic receptors is diminished, indicating a reliance on alternative vasoconstrictor mechanisms.


Asunto(s)
Adrenérgicos , Vasoconstricción , Masculino , Humanos , Adrenérgicos/farmacología , Vasoconstrictores/farmacología , Fenilefrina/farmacología , Flujo Sanguíneo Regional , Músculo Esquelético/fisiología , Hipoxia
2.
Circ Res ; 127(2): e1-e13, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32268833

RESUMEN

RATIONALE: Chronic exposure to hypoxia is associated with elevated sympathetic nervous activity and reduced vascular function in lowlanders, and Andean highlanders suffering from excessive erythrocytosis (EE); however, the mechanistic link between chronically elevated sympathetic nervous activity and hypoxia-induced vascular dysfunction has not been determined. OBJECTIVE: To determine the impact of heightened sympathetic nervous activity on resistance artery endothelial-dependent dilation (EDD), and endothelial-independent dilation, in lowlanders and Andean highlanders with and without EE. METHODS AND RESULTS: We tested healthy lowlanders (n=9) at sea level (344 m) and following 14 to 21 days at high altitude (4300 m), and permanent Andean highlanders with (n=6) and without (n=9) EE at high altitude. Vascular function was assessed using intraarterial infusions (3 progressive doses) of acetylcholine (ACh; EDD) and sodium nitroprusside (endothelial-independent dilation) before and after local α+ß adrenergic receptor blockade (phentolamine and propranolol). Intraarterial blood pressure, heart rate, and simultaneous brachial artery diameter and blood velocity were recorded at rest and during drug infusion. Changes in forearm vascular conductance were calculated. The main findings were (1) chronic hypoxia reduced EDD in lowlanders (changes in forearm vascular conductance from sea level: ACh1: -52.7±19.6%, ACh2: -25.4±38.7%, ACh3: -35.1±34.7%, all P≤0.02); and in Andeans with EE compared with non-EE (changes in forearm vascular conductance at ACh3: -36.4%, P=0.007). Adrenergic blockade fully restored EDD in lowlanders at high altitude, and normalized EDD between EE and non-EE Andeans. (2) Chronic hypoxia had no effect on endothelial-independent dilation in lowlanders, and no differences were detected between EE and non-EE Andeans; however, EID was increased in the non-EE Andeans after adrenergic blockade (P=0.012), but this effect was not observed in the EE Andeans. CONCLUSIONS: These data indicate that chronic hypoxia reduces EDD via heightened α-adrenergic signaling in lowlanders and in Andeans with EE. These vascular mechanisms have important implications for understanding the physiological consequences of acute and chronic high altitude adaptation.


Asunto(s)
Adaptación Fisiológica , Mal de Altura/metabolismo , Policitemia/metabolismo , Receptores Adrenérgicos/metabolismo , Vasodilatación , Acetilcolina/metabolismo , Acetilcolina/farmacología , Adrenérgicos/farmacología , Adulto , Altitud , Mal de Altura/sangre , Mal de Altura/fisiopatología , Presión Sanguínea , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiopatología , Frecuencia Cardíaca , Humanos , Masculino , Nitroprusiato/farmacología , Fentolamina/farmacología , Policitemia/etiología , Policitemia/fisiopatología , Propranolol/farmacología , Transducción de Señal , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/fisiopatología , Vasodilatadores/farmacología
3.
J Physiol ; 599(17): 4021-4044, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245004

RESUMEN

KEY POINTS: Humans suffering from polycythaemia undergo multiple circulatory adaptations including changes in blood rheology and structural and functional vascular adaptations to maintain normal blood pressure and vascular shear stresses, despite high blood viscosity. During exercise, several circulatory adaptations are observed, especially involving adrenergic and non-adrenergic mechanisms within non-active and active skeletal muscle to maintain exercise capacity, which is not observed in animal models. Despite profound circulatory stress, i.e. polycythaemia, several adaptations can occur to maintain exercise capacity, therefore making early identification of the disease difficult without overt symptomology. Pharmacological treatment of the background heightened sympathetic activity may impair the adaptive sympathetic response needed to match local oxygen delivery to active skeletal muscle oxygen demand and therefore inadvertently impair exercise capacity. ABSTRACT: Excessive haematocrit and blood viscosity can increase blood pressure, cardiac work and reduce aerobic capacity. However, past clinical investigations have demonstrated that certain human high-altitude populations suffering from excessive erythrocytosis, Andeans with chronic mountain sickness, appear to have phenotypically adapted to life with polycythaemia, as their exercise capacity is comparable to healthy Andeans and even with sea-level inhabitants residing at high altitude. By studying this unique population, which has adapted through natural selection, this study aimed to describe how humans can adapt to life with polycythaemia. Experimental studies included Andeans with (n = 19) and without (n = 17) chronic mountain sickness, documenting exercise capacity and characterizing the transport of oxygen through blood rheology, including haemoglobin mass, blood and plasma volume and blood viscosity, cardiac output, blood pressure and changes in total and local vascular resistances through pharmacological dissection of α-adrenergic signalling pathways within non-active and active skeletal muscle. At rest, Andeans with chronic mountain sickness had a substantial plasma volume contraction, which alongside a higher red blood cell volume, caused an increase in blood viscosity yet similar total blood volume. Moreover, both morphological and functional alterations in the periphery normalized vascular shear stress and blood pressure despite high sympathetic nerve activity. During exercise, blood pressure, cardiac work and global oxygen delivery increased similar to healthy Andeans but were sustained by modifications in both non-active and active skeletal muscle vascular function. These findings highlight widespread physiological adaptations that can occur in response to polycythaemia, which allow the maintenance of exercise capacity.


Asunto(s)
Mal de Altura , Policitemia , Aclimatación , Altitud , Animales , Humanos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA