Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(4): 729-741, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579670

RESUMEN

Glutamine synthetase (GS), encoded by GLUL, catalyzes the conversion of glutamate to glutamine. GS is pivotal for the generation of the neurotransmitters glutamate and gamma-aminobutyric acid and is the primary mechanism of ammonia detoxification in the brain. GS levels are regulated post-translationally by an N-terminal degron that enables the ubiquitin-mediated degradation of GS in a glutamine-induced manner. GS deficiency in humans is known to lead to neurological defects and death in infancy, yet how dysregulation of the degron-mediated control of GS levels might affect neurodevelopment is unknown. We ascertained nine individuals with severe developmental delay, seizures, and white matter abnormalities but normal plasma and cerebrospinal fluid biochemistry with de novo variants in GLUL. Seven out of nine were start-loss variants and two out of nine disrupted 5' UTR splicing resulting in splice exclusion of the initiation codon. Using transfection-based expression systems and mass spectrometry, these variants were shown to lead to translation initiation of GS from methionine 18, downstream of the N-terminal degron motif, resulting in a protein that is stable and enzymatically competent but insensitive to negative feedback by glutamine. Analysis of human single-cell transcriptomes demonstrated that GLUL is widely expressed in neuro- and glial-progenitor cells and mature astrocytes but not in post-mitotic neurons. One individual with a start-loss GLUL variant demonstrated periventricular nodular heterotopia, a neuronal migration disorder, yet overexpression of stabilized GS in mice using in utero electroporation demonstrated no migratory deficits. These findings underline the importance of tight regulation of glutamine metabolism during neurodevelopment in humans.


Asunto(s)
Epilepsia Generalizada , Glutamato-Amoníaco Ligasa , Glutamina , Animales , Humanos , Ratones , Encéfalo/metabolismo , Epilepsia Generalizada/genética , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Glutamatos/metabolismo , Glutamina/genética , Glutamina/metabolismo
2.
Development ; 148(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34423345

RESUMEN

We dissect genetically a gene regulatory network that involves the transcription factors Tbx4, Pitx1 and Isl1 acting cooperatively to establish the hindlimb bud, and identify key differences in the pathways that initiate formation of the hindlimb and forelimb. Using live image analysis of murine limb mesenchyme cells undergoing chondrogenesis in micromass culture, we distinguish a series of changes in cellular behaviours and cohesiveness that are required for chondrogenic precursors to undergo differentiation. Furthermore, we provide evidence that the proximal hindlimb defects observed in Tbx4 mutant mice result from a failure in the early differentiation step of chondroprogenitors into chondrocytes, providing an explanation for the origins of proximally biased limb defects.


Asunto(s)
Miembro Posterior/anomalías , Esbozos de los Miembros/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Condrogénesis , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Esbozos de los Miembros/citología , Esbozos de los Miembros/crecimiento & desarrollo , Células Madre Mesenquimatosas/metabolismo , Ratones , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Prenat Diagn ; 44(4): 465-479, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38441167

RESUMEN

OBJECTIVES: In October 2020, rapid prenatal exome sequencing (pES) was introduced into routine National Health Service (NHS) care in England. This study aimed to explore parent experiences and their information and support needs from the perspective of parents offered pES and of health professionals involved in its delivery. METHODS: In this qualitative study, semi-structured interviews were conducted with 42 women and 6 male partners and 63 fetal medicine and genetic health professionals. Interviews were transcribed verbatim and analysed using thematic analysis. RESULTS: Overall views about pES were positive and parents were grateful to be offered the test. Highlighted benefits of pES included the value of the additional information for pregnancy management and planning for future pregnancies. An anxious wait for results was common, often associated with the need to make decisions near to 24 weeks in pregnancy when there are legal restrictions for late termination. Descriptions of dealing with uncertainty were also common, even when results had been returned. Many parents described pES results as informing decision-making around whether or not to terminate pregnancy. Some professionals were concerned that a non-informative result could be overly reassuring and highlighted that careful counselling was needed to ensure parents have a good understanding of what the result means for their pregnancy. Emotional support from professionals was valued; however, some parents felt that post-test support was lacking. CONCLUSION: Parents and professionals welcomed the introduction of pES. Results inform parents' decision-making around the termination of pregnancy. When there are no diagnostic findings or uncertain findings from pES, personalised counselling that considers scans and other tests are crucial. Directing parents to reliable online sources of information and providing emotional support throughout could improve their experiences of care.


Asunto(s)
Padres , Medicina Estatal , Embarazo , Humanos , Masculino , Femenino , Secuenciación del Exoma , Padres/psicología , Inglaterra , Consejo , Investigación Cualitativa
4.
Am J Med Genet A ; 188(7): 2036-2047, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35445792

RESUMEN

Unique or multiple congenital facial skin polyps are features of several rare syndromes, from the most well-known Pai syndrome (PS), to the less recognized oculoauriculofrontonasal syndrome (OAFNS), encephalocraniocutaneous lipomatosis (ECCL), or Sakoda complex (SC). We set up a research project aiming to identify the molecular bases of PS. We reviewed 27 individuals presenting with a syndromic frontonasal polyp and initially referred for PS. Based on strict clinical classification criteria, we could confirm only nine (33%) typical and two (7%) atypical PS individuals. The remaining ones were either OAFNS (11/27-41%) or presenting with an overlapping syndrome (5/27-19%). Because of the phenotypic overlap between these entities, OAFNS, ECCL, and SC can be either considered as differential diagnosis of PS or part of the same spectrum. Exome and/or genome sequencing from blood DNA in 12 patients and from affected tissue in one patient failed to identify any replication in candidate genes. Taken together, our data suggest that conventional approaches routinely utilized for the identification of molecular etiologies responsible for Mendelian disorders are inconclusive. Future studies on affected tissues and multiomics studies will thus be required in order to address either the contribution of mosaic or noncoding variation in these diseases.


Asunto(s)
Anomalías del Ojo , Lipomatosis , Síndromes Neurocutáneos , Agenesia del Cuerpo Calloso , Labio Leporino , Coloboma , Anomalías Craneofaciales , Diagnóstico Diferencial , Oído Externo/anomalías , Anomalías del Ojo/genética , Oftalmopatías , Cara/anomalías , Humanos , Lipoma , Lipomatosis/genética , Pólipos Nasales , Síndromes Neurocutáneos/genética , Anomalías del Sistema Respiratorio , Enfermedades de la Piel , Columna Vertebral/anomalías
5.
Am J Hum Genet ; 103(5): 752-768, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388402

RESUMEN

The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.


Asunto(s)
Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Megalencefalia/genética , Factores de Transcripción NFI/genética , Adolescente , Adulto , Animales , Corteza Cerebral/patología , Niño , Preescolar , Codón sin Sentido/genética , Estudios de Cohortes , Cuerpo Calloso/patología , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
7.
Genet Med ; 22(5): 867-877, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31949313

RESUMEN

PURPOSE: To investigate if specific exon 38 or 39 KMT2D missense variants (MVs) cause a condition distinct from Kabuki syndrome type 1 (KS1). METHODS: Multiple individuals, with MVs in exons 38 or 39 of KMT2D that encode a highly conserved region of 54 amino acids flanked by Val3527 and Lys3583, were identified and phenotyped. Functional tests were performed to study their pathogenicity and understand the disease mechanism. RESULTS: The consistent clinical features of the affected individuals, from seven unrelated families, included choanal atresia, athelia or hypoplastic nipples, branchial sinus abnormalities, neck pits, lacrimal duct anomalies, hearing loss, external ear malformations, and thyroid abnormalities. None of the individuals had intellectual disability. The frequency of clinical features, objective software-based facial analysis metrics, and genome-wide peripheral blood DNA methylation patterns in these patients were significantly different from that of KS1. Circular dichroism spectroscopy indicated that these MVs perturb KMT2D secondary structure through an increased disordered to ɑ-helical transition. CONCLUSION: KMT2D MVs located in a specific region spanning exons 38 and 39 and affecting highly conserved residues cause a novel multiple malformations syndrome distinct from KS1. Unlike KMT2D haploinsufficiency in KS1, these MVs likely result in disease through a dominant negative mechanism.


Asunto(s)
Anomalías Múltiples , Enfermedades Hematológicas , Enfermedades Vestibulares , Anomalías Múltiples/genética , Cara/anomalías , Enfermedades Hematológicas/diagnóstico , Enfermedades Hematológicas/genética , Humanos , Mutación , Enfermedades Vestibulares/diagnóstico , Enfermedades Vestibulares/genética
8.
Hum Mutat ; 39(9): 1246-1261, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29924900

RESUMEN

Adams-Oliver syndrome (AOS) is a rare developmental disorder, characterized by scalp aplasia cutis congenita (ACC) and transverse terminal limb defects (TTLD). Autosomal dominant forms of AOS are linked to mutations in ARHGAP31, DLL4, NOTCH1 or RBPJ, while DOCK6 and EOGT underlie autosomal recessive inheritance. Data on the frequency and distribution of mutations in large cohorts are currently limited. The purpose of this study was therefore to comprehensively examine the genetic architecture of AOS in an extensive cohort. Molecular diagnostic screening of 194 AOS/ACC/TTLD probands/families was conducted using next-generation and/or capillary sequencing analyses. In total, we identified 63 (likely) pathogenic mutations, comprising 56 distinct and 22 novel mutations, providing a molecular diagnosis in 30% of patients. Taken together with previous reports, these findings bring the total number of reported disease variants to 63, with a diagnostic yield of 36% in familial cases. NOTCH1 is the major contributor, underlying 10% of AOS/ACC/TTLD cases, with DLL4 (6%), DOCK6 (6%), ARHGAP31 (3%), EOGT (3%), and RBPJ (2%) representing additional causality in this cohort. We confirm the relevance of genetic screening across the AOS/ACC/TTLD spectrum, highlighting preliminary but important genotype-phenotype correlations. This cohort offers potential for further gene identification to address missing heritability.


Asunto(s)
Displasia Ectodérmica/genética , Deformidades Congénitas de las Extremidades/genética , Dermatosis del Cuero Cabelludo/congénito , Proteínas de Unión al GTP rho/genética , Displasia Ectodérmica/fisiopatología , Extremidades/fisiopatología , Femenino , Estudios de Asociación Genética , Humanos , Deformidades Congénitas de las Extremidades/fisiopatología , Masculino , Mutación , Linaje , Receptores Notch/genética , Cuero Cabelludo/fisiopatología , Dermatosis del Cuero Cabelludo/genética , Dermatosis del Cuero Cabelludo/fisiopatología
9.
J Med Genet ; 54(6): 432-440, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28258187

RESUMEN

BACKGROUND: Collagens are one of the major constituents of the pial membrane, which plays a crucial role in neuronal migration and cortical lamination during brain development. Type III procollagen, the chains of which are encoded by COL3A1, is the ligand of the G protein-coupled receptor 56 (GPR56), also known as adhesion G protein-coupled receptor G1. Bi-allelic mutations in GPR56 give rise to cobblestone-like malformation, white matter changes and cerebellar dysplasia. This report shows that bi-allelic mutations in COL3A1 are associated with a similar phenotype. METHODS: Exome analysis was performed in a family consisting of two affected and two non-affected siblings. Brain imaging studies of this family and of two previously reported individuals with bi-allelic mutations in COL3A1 were reviewed. Functional assays were performed on dermal fibroblasts. RESULTS: Exome analysis revealed a novel homozygous variant c.145C>G (p.Pro49Ala) in exon 2 of COL3A1. Brain MRI in the affected siblings as well as in the two previously reported individuals with bi-allelic COL3A1 mutations showed a brain phenotype similar to that associated with mutations in GPR56. CONCLUSION: Homozygous or compound heterozygous mutations in COL3A1 are associated with cobblestone-like malformation in all three families reported to date. The variability of the phenotype across patients suggests that genetic alterations in distinct domains of type III procollagen can lead to different outcomes. The presence of cobblestone-like malformation in patients with bi-allelic COL3A1 mutations emphasises the critical role of the type III collagen-GPR56 axis and the pial membrane in the regulation of brain development and cortical lamination.


Asunto(s)
Colágeno Tipo III/genética , Quistes/genética , Malformaciones del Desarrollo Cortical/genética , Receptores Acoplados a Proteínas G/genética , Sustancia Blanca/patología , Adulto , Alelos , Células Cultivadas , Enfermedades Cerebelosas/genética , Enfermedades Cerebelosas/patología , Niño , Preescolar , Quistes/patología , Exoma/genética , Exones/genética , Femenino , Fibroblastos/patología , Humanos , Ligandos , Imagen por Resonancia Magnética/métodos , Masculino , Malformaciones del Desarrollo Cortical/patología , Mutación/genética , Fenotipo , Adulto Joven
10.
Am J Hum Genet ; 93(6): 1118-25, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24268655

RESUMEN

Auriculocondylar syndrome (ACS) is a rare craniofacial disorder with mandibular hypoplasia and question-mark ears (QMEs) as major features. QMEs, consisting of a specific defect at the lobe-helix junction, can also occur as an isolated anomaly. Studies in animal models have indicated the essential role of endothelin 1 (EDN1) signaling through the endothelin receptor type A (EDNRA) in patterning the mandibular portion of the first pharyngeal arch. Mutations in the genes coding for phospholipase C, beta 4 (PLCB4) and guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 3 (GNAI3), predicted to function as signal transducers downstream of EDNRA, have recently been reported in ACS. By whole-exome sequencing (WES), we identified a homozygous substitution in a furin cleavage site of the EDN1 proprotein in ACS-affected siblings born to consanguineous parents. WES of two cases with vertical transmission of isolated QMEs revealed a stop mutation in EDN1 in one family and a missense substitution of a highly conserved residue in the mature EDN1 peptide in the other. Targeted sequencing of EDN1 in an ACS individual with related parents identified a fourth, homozygous mutation falling close to the site of cleavage by endothelin-converting enzyme. The different modes of inheritance suggest that the degree of residual EDN1 activity differs depending on the mutation. These findings provide further support for the hypothesis that ACS and QMEs are uniquely caused by disruption of the EDN1-EDNRA signaling pathway.


Asunto(s)
Enfermedades del Oído/genética , Oído/anomalías , Genes Dominantes , Genes Recesivos , Mutación , Fenotipo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Análisis Mutacional de ADN , Enfermedades del Oído/diagnóstico , Enfermedades del Oído/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Femenino , Genotipo , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Alineación de Secuencia , Transducción de Señal
11.
Am J Med Genet A ; 170(12): 3133-3137, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27642715

RESUMEN

Acrofacial dysostosis syndrome of Rodriguez is characterized by severe mandibular underdevelopment, upper limb phocomelia with absent fingers, absent fibulae, cleft palate, microtia, and abnormal pulmonary function. First reported in three siblings it was assumed to be an autosomal recessive condition. However, subsequent publication reported a further five simplex occurrences and a living patient with a heterozygous mutation in the SF3B4 gene. Exome sequencing was performed on four fetuses with this disorder, including one of the originally described affected siblings. We identified two heterozygous frameshift mutations in the SF3B4 gene in three of the four fetuses investigated. The observed mutation was apparently de novo in one fetus for whom parental DNA was available. Thus, Acrofacial dysostosis syndrome of Rodriguez is an autosomal dominant condition and the recurrences identified in the initial report were likely due to gonadal mosaicism. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Anomalías Múltiples/genética , Predisposición Genética a la Enfermedad , Deformidades Congénitas de la Mano/genética , Disostosis Mandibulofacial/genética , Factores de Empalme de ARN/genética , Anomalías Múltiples/fisiopatología , Feto , Deformidades Congénitas de la Mano/fisiopatología , Heterocigoto , Humanos , Masculino , Disostosis Mandibulofacial/fisiopatología , Mutación , Hermanos
12.
Hum Mutat ; 36(8): 743-52, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25907713

RESUMEN

Dent disease is a rare X-linked tubulopathy characterized by low molecular weight proteinuria, hypercalciuria, nephrocalcinosis and/or nephrolithiasis, progressive renal failure, and variable manifestations of other proximal tubule dysfunctions. It often progresses over a few decades to chronic renal insufficiency, and therefore molecular characterization is important to allow appropriate genetic counseling. Two genetic subtypes have been described to date: Dent disease 1 is caused by mutations of the CLCN5 gene, coding for the chloride/proton exchanger ClC-5; and Dent disease 2 by mutations of the OCRL gene, coding for the inositol polyphosphate 5-phosphatase OCRL-1. Herein, we review previously reported mutations (n = 192) and their associated phenotype in 377 male patients with Dent disease 1 and describe phenotype and novel (n = 42) and recurrent mutations (n = 24) in a large cohort of 117 Dent disease 1 patients belonging to 90 families. The novel missense and in-frame mutations described were mapped onto a three-dimensional homology model of the ClC-5 protein. This analysis suggests that these mutations affect the dimerization process, helix stability, or transport. The phenotype of our cohort patients supports and extends the phenotype that has been reported in smaller studies.


Asunto(s)
Canales de Cloruro/genética , Enfermedad de Dent/genética , Mutación , Animales , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Estudios de Cohortes , Enfermedad de Dent/metabolismo , Estudios de Asociación Genética , Humanos , Masculino , Ratones , Ratones Noqueados , Linaje
13.
Am J Hum Genet ; 91(2): 358-64, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22795537

RESUMEN

Excessive growth of terminal hair around the elbows (hypertrichosis cubiti) has been reported both in isolation and in association with a variable spectrum of associated phenotypic features. We identified a cohort of six individuals with hypertrichosis cubiti associated with short stature, intellectual disability, and a distinctive facial appearance, consistent with a diagnosis of Wiedemann-Steiner syndrome (WSS). Utilizing a whole-exome sequencing approach, we identified de novo mutations in MLL in five of the six individuals. MLL encodes a histone methyltransferase that regulates chromatin-mediated transcription through the catalysis of methylation of histone H3K4. Each of the five mutations is predicted to result in premature termination of the protein product. Furthermore, we demonstrate that transcripts arising from the mutant alleles are subject to nonsense-mediated decay. These findings define the genetic basis of WSS, provide additional evidence for the role of haploinsufficency of histone-modification enzymes in multiple-congenital-anomaly syndromes, and further illustrate the importance of the regulation of histone modification in development.


Asunto(s)
Anomalías Múltiples/genética , Trastornos del Crecimiento/genética , Hipertricosis/congénito , Proteína de la Leucemia Mieloide-Linfoide/genética , Anomalías Múltiples/patología , Secuencia de Bases , Exoma/genética , Componentes del Gen , Trastornos del Crecimiento/patología , Haploinsuficiencia/genética , N-Metiltransferasa de Histona-Lisina , Humanos , Hipertricosis/genética , Hipertricosis/patología , Datos de Secuencia Molecular , Mutación/genética , Análisis de Secuencia de ADN
15.
Am J Med Genet A ; 167A(3): 461-75, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25604898

RESUMEN

Type 2 collagen disorders encompass a diverse group of skeletal dysplasias that are commonly associated with orthopedic, ocular, and hearing problems. However, the frequency of many clinical features has never been determined. We retrospectively investigated the clinical, radiological, and genotypic data in a group of 93 patients with molecularly confirmed SEDC or a related disorder. The majority of the patients (80/93) had short stature, with radiological features of SEDC (n = 64), others having SEMD (n = 5), Kniest dysplasia (n = 7), spondyloperipheral dysplasia (n = 2), or Torrance-like dysplasia (n = 2). The remaining 13 patients had normal stature with mild SED, Stickler-like syndrome or multiple epiphyseal dysplasia. Over 50% of the patients had undergone orthopedic surgery, usually for scoliosis, femoral osteotomy or hip replacement. Odontoid hypoplasia was present in 56% (95% CI 38-74) and a correlation between odontoid hypoplasia and short stature was observed. Atlanto-axial instability, was observed in 5 of the 18 patients (28%, 95% CI 10-54) in whom flexion-extension films of the cervical spine were available; however, it was rarely accompanied by myelopathy. Myopia was found in 45% (95% CI 35-56), and retinal detachment had occurred in 12% (95% CI 6-21; median age 14 years; youngest age 3.5 years). Thirty-two patients complained of hearing loss (37%, 95% CI 27-48) of whom 17 required hearing aids. The ophthalmological features and possibly also hearing loss are often relatively frequent and severe in patients with splicing mutations. Based on clinical findings, age at onset and genotype-phenotype correlations in this cohort, we propose guidelines for the management and follow-up in this group of disorders.


Asunto(s)
Colágeno Tipo II/genética , Mutación , Osteocondrodisplasias/congénito , Fenotipo , Adolescente , Adulto , Anciano , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , Osteocondrodisplasias/diagnóstico por imagen , Osteocondrodisplasias/genética , Radiografía , Adulto Joven
16.
Cardiol Young ; 25(4): 712-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24932728

RESUMEN

Supravalvular aortic aneurysms are less frequent than abdominal ones. Among Supravalvular aortic aneurysm aetiologies, we focused on dystrophic lesions as they can be secondary to genetic causes such as elastin anomaly. We report on a familial 7q11.23 triplication - including the ELN gene - segregating with a supravalvular aortic aneurysm. During her first pregnancy, our index patient was diagnosed with tuberous sclerosis and with a Supravalvular aortic aneurysm. The foetus was affected equally. For the second pregnancy, parents applied for preimplantation diagnosis, and a subsequent prenatal diagnosis was offered to the couple, comprising TSC1 molecular analysis, karyotype, and multiplex ligation probe amplification. TSC1 mutation was not found on foetal deoxyribo nucleic acid. Foetal karyotype was normal, but multiplex ligation probe amplification detected a 7q11.23 duplication. Quantitative-polymerase chain reaction and array-comparative genomic hybridisation carried out to further assess this chromosome imbalance subsequently identified a 7q11.23 triplication involving ELN and LIMK1. Foetal heart ultrasound identified a Supravalvular aortic aneurysm. A familial screening was offered for the 7q11.23 triplication and, when found, heart ultrasound was performed. The triplication was diagnosed in our index case as well as in her first child. Of the 17 individuals from this family, 11 have the triplication. Of the 11 individuals with the triplication, 10 were identified to have a supravalvular aortic aneurysm. Of them, two individuals received a medical treatment and one individual needed surgery. We provide evidence of supravalvular aortic aneurysm segregating with 7q11.23 triplication in this family. We would therefore recommend cardiac surveillance for individuals with 7q11.23 triplication. It would also be interesting to offer a quantitative-polymerase chain reaction or an array-comparative genomic hybridisation to a larger cohort of patients presenting with isolated supravalvular aortic aneurysm, as it may provide further information.


Asunto(s)
Aneurisma de la Aorta Torácica/genética , Predisposición Genética a la Enfermedad/genética , Esclerosis Tuberosa/genética , Adulto , Anciano , Aneurisma de la Aorta Torácica/complicaciones , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Hibridación de Ácido Nucleico , Reacción en Cadena de la Polimerasa , Embarazo , Diagnóstico Prenatal , Esclerosis Tuberosa/complicaciones , Ultrasonografía Prenatal , Adulto Joven
17.
Hum Mutat ; 35(4): 478-85, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24470203

RESUMEN

Mandibulofacial dysostosis, Guion-Almeida type (MFDGA) is a recently delineated multiple congenital anomalies/mental retardation syndrome characterized by the association of mandibulofacial dysostosis (MFD) with external ear malformations, hearing loss, cleft palate, choanal atresia, microcephaly, intellectual disability, oesophageal atresia (OA), congenital heart defects (CHDs), and radial ray defects. MFDGA emerges as a clinically recognizable entity, long underdiagnosed due to highly variable presentations. The main differential diagnoses are CHARGE and Feingold syndromes, oculoauriculovertebral spectrum, and other MFDs. EFTUD2, located on 17q21.31, encodes a component of the major spliceosome and is disease causing in MFDGA, due to heterozygous loss-of-function (LoF) mutations. Here, we describe a series of 36 cases of MFDGA, including 24 previously unreported cases, and we review the literature in order to delineate the clinical spectrum ascribed to EFTUD2 LoF. MFD, external ear anomalies, and intellectual deficiency occur at a higher frequency than microcephaly. We characterize the evolution of the facial gestalt at different ages and describe novel renal and cerebral malformations. The most frequent extracranial malformation in this series is OA, followed by CHDs and skeletal abnormalities. MFDGA is probably more frequent than other syndromic MFDs such as Nager or Miller syndromes. Although the wide spectrum of malformations complicates diagnosis, characteristic facial features provide a useful handle.


Asunto(s)
Anomalías Múltiples/patología , Ano Imperforado/patología , Deformidades Congénitas de la Mano/patología , Pérdida Auditiva Bilateral/patología , Discapacidad Intelectual/patología , Disostosis Mandibulofacial/patología , Microcefalia/patología , Oftalmoplejía/patología , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Trombocitopenia/patología , Anomalías Múltiples/genética , Ano Imperforado/genética , Niño , Preescolar , Diagnóstico Diferencial , Oído Externo/patología , Femenino , Deformidades Congénitas de la Mano/genética , Haploinsuficiencia , Pérdida Auditiva Bilateral/genética , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Disostosis Mandibulofacial/genética , Microcefalia/genética , Mutación , Oftalmoplejía/genética , Fenotipo , Embarazo , Diagnóstico Prenatal , Trombocitopenia/genética
18.
J Med Genet ; 50(3): 174-86, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23315542

RESUMEN

BACKGROUND: Auriculocondylar syndrome (ACS) is a rare craniofacial disorder consisting of micrognathia, mandibular condyle hypoplasia and a specific malformation of the ear at the junction between the lobe and helix. Missense heterozygous mutations in the phospholipase C, ß 4 (PLCB4) and guanine nucleotide binding protein (G protein), α inhibiting activity polypeptide 3 (GNAI3) genes have recently been identified in ACS patients by exome sequencing. These genes are predicted to function within the G protein-coupled endothelin receptor pathway during craniofacial development. RESULTS: We report eight additional cases ascribed to PLCB4 or GNAI3 gene lesions, comprising six heterozygous PLCB4 missense mutations, one heterozygous GNAI3 missense mutation and one homozygous PLCB4 intragenic deletion. Certain residues represent mutational hotspots; of the total of 11 ACS PLCB4 missense mutations now described, five disrupt Arg621 and two disrupt Asp360. The narrow distribution of mutations within protein space suggests that the mutations may result in dominantly interfering proteins, rather than haploinsufficiency. The consanguineous parents of the patient with a homozygous PLCB4 deletion each harboured the heterozygous deletion, but did not present the ACS phenotype, further suggesting that ACS is not caused by PLCB4 haploinsufficiency. In addition to ACS, the patient harbouring a homozygous deletion presented with central apnoea, a phenotype that has not been previously reported in ACS patients. CONCLUSIONS: These findings indicate that ACS is not only genetically heterogeneous but also an autosomal dominant or recessive condition according to the nature of the PLCB4 gene lesion.


Asunto(s)
Enfermedades del Oído/genética , Oído/anomalías , Mutación , Adulto , Niño , Preescolar , Análisis Mutacional de ADN , Oído/patología , Enfermedades del Oído/patología , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Predisposición Genética a la Enfermedad , Humanos , Lactante , Masculino , Linaje , Fosfolipasa C beta/genética , Reacción en Cadena de la Polimerasa
19.
Front Genet ; 15: 1401705, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903755

RESUMEN

Introduction: In October 2020, rapid prenatal exome sequencing (pES) was introduced into routine National Health Service (NHS) care in England, requiring the coordination of care from specialist genetics, fetal medicine (FM) and laboratory services. This mixed methods study explored the experiences of professionals involved in delivering the pES service during the first 2 years of its delivery in the NHS. Methods: A survey (n = 159) and semi-structured interviews (n = 63) with healthcare professionals, including clinical geneticists, FM specialists, and clinical scientists (interviews only) were used to address: 1) Views on the pES service; 2) Capacity and resources involved in offering pES; 3) Awareness, knowledge, and educational needs; and 4) Ambitions and goals for the future. Results: Overall, professionals were positive about the pES service with 77% rating it as Good or Excellent. A number of benefits were reported, including the increased opportunity for receiving actionable results for parental decision-making, improving equity of access to genomic tests and fostering close relationships between FM and genetics departments. Nonetheless, there was evidence that the shift to offering pES in a clinical setting had brought some challenges, such as additional clinic time, administrative processes, perceived lack of autonomy in decision-making regarding pES eligibility and difficulty engaging with peripheral maternity units. Concerns were also raised about the lack of confidence and gaps in genomics knowledge amongst non-genetics professionals - especially midwives. However, the findings also highlighted value in both FM, obstetric and genetics professionals benefiting from further training with a focus on recognising and managing prenatally diagnosed genetic conditions. Conclusion: Healthcare professionals are enthusiastic about the benefits of pES, and through multi-collaborative working, have developed relationships that have contributed to effective communication across specialisms. Although limitations on resources and variation in knowledge about pES have impacted service delivery, professionals were hopeful that improvements to infrastructure and the upskilling of all professionals involved in the pathway would optimise the benefits of pES for both parents and professionals.

20.
Hum Mutat ; 34(4): 587-94, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23316014

RESUMEN

Missense mutations affecting membrane-bound transcription factor protease site 2 (MBTPS2) have been associated with Ichthyosis Follicularis with Atrichia and Photophobia (IFAP) syndrome with or without BRESHECK syndrome, with keratosis follicularis spinulosa decalvans, and Olmsted syndrome. This metalloprotease activates, by intramembranous trimming in conjunction with the protease MBTPS1, regulatory factors involved in sterol control of transcription and in cellular stress response. In this study, 11 different MBTPS2 missense mutations detected in patients from 13 unrelated families were correlated with the clinical phenotype, with their effect on cellular growth in media without lipids, and their potential role for sterol control of transcription. Seven variants were novel [c.774C>G (p.I258M); c.758G>C (p.G253A); c.686T>C (p.F229S); c.1427T>C (p.L476S); c.1430A>T (p.D477V); c.1499G>A (p.G500D); c.1538T>C (p.L513P)], four had previously been reported in unrelated sibships [c.261G>A (p.M87I); c.1286G>A (p.R429H); c.1424T>C (p.F475S); c.1523A>G (p.N508S)]. In the enzyme, the mutations cluster in transmembrane domains. Amino-acid exchanges near the active site are more detrimental to functionality of the enzyme and, clinically, associated with more severe phenotypes. In male patients, a genotype-phenotype correlation begins to emerge, linking the site of the mutation in MBTPS2 with the clinical outcome described as IFAP syndrome with or without BRESHECK syndrome, keratosis follicularis spinulosa decalvans, X-linked, Olmsted syndrome, or possibly further X-linked traits with an oculocutaneous component.


Asunto(s)
Alopecia/genética , Estudios de Asociación Genética , Ictiosis/genética , Metaloendopeptidasas/genética , Mutación Missense , Fotofobia/genética , Adolescente , Alelos , Alopecia/diagnóstico , Animales , Línea Celular , Niño , Preescolar , Femenino , Prueba de Complementación Genética , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Ictiosis/diagnóstico , Masculino , Metaloendopeptidasas/química , Metaloendopeptidasas/metabolismo , Repeticiones de Microsatélite , Fenotipo , Fotofobia/diagnóstico , Polimorfismo de Nucleótido Simple , Transporte de Proteínas , Enfermedades Cutáneas Genéticas/diagnóstico , Enfermedades Cutáneas Genéticas/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA