Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JDS Commun ; 5(3): 195-199, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38646584

RESUMEN

During the transition period, dairy cows are often exposed to negative energy balance (NEB), leading to lipid mobilization from adipose tissue into nonesterified fatty acids (NEFA), a common indicator of heightened illness risk. This study aimed to use blood near-infrared (NIR) spectra data to classify NEB into high or low categories, based on early-lactation cow NEFA thresholds. We collected a total of 186 plasma samples from 100 Holstein cows. The samples were categorized into critical thresholds, based on previous literature, of ≥0.60 and ≥0.70 mEq/L for identifying high NEB. Spectral data were preprocessed before the development of the predictive modes, which included the implementation of multiplicative scatter correction, standard normal variate (SNV), and first and second derivatives. The classification was performed using partial least square discriminant analyses (PLS-DA), and predictive performance was assessed using leave-one-out cross-validation. Predictive quality for each class was evaluated through specificity, precision, sensitivity, and F1 score. The study showed promising results, with the SNV technique achieving higher F1 scores. The model found 72.7% specificity, 78.9% precision, 80.8% sensitivity, and 79.8% F1 score to classify animals with NEFA levels of ≥0.60 mEq/L, and 82.1% specificity, 78.7% precision, 80.8% sensitivity, and 79.7% F1 score to classify animals with NEFA levels ≥0.70 mEq/L. These results indicate that NIR spectroscopy could serve as a tool for detecting cows under severe NEB, also showing potential for broader application across the entire transition period, as the spectral signal carried relevant information regarding cow metabolism. Furthermore, the combination of predictors derived from plasma spectra and other cow-level information can lead to more accurate disease alerts, given their relationship with the NEB.

2.
Metabolites ; 13(5)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37233672

RESUMEN

The neonatal leptin surge is important for hypothalamic development, feed intake regulation, and long-term metabolic control. In sheep, the leptin surge is eliminated with maternal overnutrition and an elevated dam body condition score (BCS), but this has not been assessed in dairy cattle. The aim of this study was to characterize the neonatal profile of leptin, cortisol and other key metabolites in calves born to Holstein cows with a range of BCS. Dam BCS was determined 21 d before expected parturition. Blood was collected from calves within 4 h of birth (d 0), and on days 1, 3, 5, and 7. Serum was analyzed for concentrations of leptin, cortisol, blood urea nitrogen, ß-hydroxybutyrate (BHB), free fatty acids (FFA), triglycerides, and total protein (TP). Statistical analysis was performed separately for calves sired by Holstein (HOL) or Angus (HOL-ANG) bulls. Leptin tended to decrease after birth in HOL calves, but there was no evidence of an association between leptin and BCS. For HOL calves, the cortisol level increased with an increasing dam BCS on day 0 only. Dam BCS was variably associated with the calf BHB and TP levels, depending on the sire breed and day of age. Further investigation is required to elucidate the impacts of maternal dietary and energy status during gestation on offspring metabolism and performance, in addition to the potential impact of the absence of a leptin surge on long-term feed intake regulation in dairy cattle.

3.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37305985

RESUMEN

Feeding rumen-protected choline (RPC) to late gestation dairy cows has potential to affect growth in offspring. The objective of this study was to evaluate the effects of in utero choline exposure on the growth, feed efficiency (FE), metabolism, and carcass quality of Angus × Holstein cattle. Multiparous Holstein cows pregnant with male (N = 17) or female (N = 30) Angus-sired calves were enrolled 21 d prepartum and randomly assigned to one of four dietary treatments varying in quantity and formulation of RPC. The treatments included a control with 0 g/d supplemental RPC (CTL), supplemental RPC fed at the recommended dose (RD) of 15 g/d from either an established RPC product (RPC1RD; ReaShure; Balchem Corp.) or choline ion from a concentrated RPC prototype (RPC2RD; Balchem Corp.), or a high dose (HD) of RPC2 fed at 22 g/d (RPC2HD). From 2 to 6 mo of age, calves were group housed and offered 2.3 kg grain/hd/d (42% CP) with ad libitum grass hay, and stepped up to a complete finishing diet by 7 mo (12.0% CP; 1.34 Mcal/kg NEg). Weight and height were measured monthly. Animal FE was measured in individual pens for 35 d at 8 mo. Feed intake was measured daily, and blood was obtained on day 18 during the FE period. Afterwards, cattle were group housed and offered a free-choice finishing diet until slaughter, where carcass yield and quality characteristics were measured. Mixed models were used in PROC MIXED (SAS, 9.4) with the fixed effects of treatment, sex, time, their interactions, and the random effect of calf. Month was the repeated measure, and preplanned contrasts were used. Blood and FE data were analyzed with the fixed effect of dam choline treatment, calf sex, and the interaction. Increasing dose of RPC tended to increase weight over the entire study period. Feeding any RPC increased hip and wither height compared with CTL, and increasing RPC dose linearly increased hip and wither height. Treatment and sex interacted on DMI whereby increasing RPC intake linearly increased DMI for males but not females. Compared with control, feeding any RPC decreased plasma insulin, glucose, and an insulin sensitivity index (RQUICKI). In utero choline exposure increased kidney-pelvic-heart fat and marbling score. Mechanisms of action for intrauterine choline exposure on offspring growth, metabolism, and carcass characteristics should be explored as they have direct implications for profitability for cattle growers and feeders.


Common nutritional and management programs implemented during gestation in dairy cattle also have positive outcomes for offspring growth, health, and well-being. Recent work has demonstrated that supplementing rumen-protected choline (RPC) to dairy cows for several weeks before calving increases growth and feed efficiency (FE) of their calves. Considering the recent industry trends of breeding dairy cows with beef semen, any potential growth and FE advantages imparted by prenatal RPC supplementation of the dams could help increase value of the resulting beef × dairy calves. The objective of this study was to evaluate growth, FE, and carcass characteristics of beef × dairy calves from dairy cows supplemented with RPC before calving. Feeding RPC to dairy cows before calving increased offspring weight and height through 9 mo of age. In utero exposure to choline also improved markers of insulin sensitivity of the offspring while being fed with a high-energy diet. Dam dietary RPC supplementation increased offspring kidney, pelvic, and heart fat at slaughter, and also increased marbling score. Considering the importance of marbling in carcass quality, the potential of RPC to positively influence offspring performance could be beneficial for further enhancing value of beef × dairy cattle at slaughter.


Asunto(s)
Colina , Suplementos Dietéticos , Femenino , Bovinos , Embarazo , Animales , Masculino , Colina/farmacología , Destete , Dieta/veterinaria , Ingestión de Alimentos , Alimentación Animal/análisis
4.
Animals (Basel) ; 12(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36230297

RESUMEN

Bovine fatty liver syndrome (bFLS) is difficult to diagnose because a liver tissue biopsy is required to assess liver triglyceride (TG) content. We hypothesized that a blood biomarker panel could be a convenient alternative method of liver TG content assessment and bFLS diagnosis. Our objectives were to predict liver TG using blood biomarker concentrations across days in milk (DIM; longitudinal, LT) or at a single timepoint (ST; 3, 7, or 14 DIM), as well as different biomarker combination based on their perceived accessibility. Data from two separate experiments (n = 65 cows) was used for model training and validation. Response variables were based on the maximum liver TG observed in 1 and 14 DIM liver biopsies: Max TG (continuous), Low TG (TG > 13.3% dry matter; DM), Median TG (TG > 17.1% DM), and High TG (TG > 22.0% DM). Model performance varied but High TG was well predicted by sparse partial least squares­discriminate analysis models using LT and ST data, achieving balanced error rates ≤ 15.4% for several model variations during cross-validation. In conclusion, blood biomarker panels using 7 DIM, 14 DIM, or LT data may be a useful diagnostic tool for bFLS in research and field settings.

5.
Sci Rep ; 11(1): 2839, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531537

RESUMEN

Fatty liver syndrome is a prevalent metabolic disorder in peripartum dairy cows that unfavorably impacts lactation performance and health. Patatin-like phospholipase domain-containing protein 3 (PNPLA3) is a lipase that plays a central role in human non-alcoholic fatty liver disease etiology but has received limited attention in bovine fatty liver research. Thus, we investigated the relationship between tissue PNPLA3 expression and liver triglyceride accumulation in vivo via a ketosis induction protocol in multiparous dairy cows peripartum, as well as in vitro via small interfering RNA knockdown of PNPLA3 mRNA expression in bovine primary hepatocytes. Results demonstrated a negative association (P = 0.04) between liver PNPLA3 protein abundance and liver triglyceride content in peripartum dairy cows, while adipose PNPLA3 protein abundance was not associated with liver triglyceride content or blood fatty acid concentration. Knockdown of PNPLA3 mRNA resulted in reduced PNPLA3 protein abundance (P < 0.01) and greater liver triglyceride content (P < 0.01). Together, these results suggest greater liver PNPLA3 protein abundance may directly limit liver triglyceride accumulation peripartum, potentially preventing bovine fatty liver or accelerating recovery from fatty liver syndrome.


Asunto(s)
Cetosis/veterinaria , Lipasa/metabolismo , Proteínas de la Membrana/metabolismo , Enfermedad del Hígado Graso no Alcohólico/veterinaria , Triglicéridos/metabolismo , Animales , Bovinos , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Hepatocitos , Cetosis/patología , Lipasa/genética , Hígado/enzimología , Hígado/metabolismo , Hígado/patología , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Periodo Periparto/metabolismo , Cultivo Primario de Células , Triglicéridos/análisis
6.
Animals (Basel) ; 11(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34573524

RESUMEN

Lipid-related metabolic disorders (LRMD) are prevalent in early lactation dairy cows, and have detrimental effects on productivity and health. Our objectives were to identify cows resistant or susceptible to LRMD using a ketosis induction protocol (KIP) to discover differentially expressed liver genes and metabolic pathways associated with disposition. Clustering cows based on postpartum lipid metabolite concentrations within dietary treatments identified cows more or less susceptible (MS vs. LS) to LRMD within the control treatment, and more or less resistant (MR vs. LR) within the KIP treatment. Whole-transcriptome RNA sequencing was performed on liver samples (-28, +1, and +14 days relative to calving) to assess differential gene and pathway expression (LS vs. MS; MR vs. LR; n = 3 cows per cluster). Cows within the MS and LR clusters had evidence of greater blood serum ß-hydroxybutyrate concentration and liver triglyceride content than the LS and MR clusters, respectively. The inferred metabolism of differentially expressed genes suggested a role of immune response (i.e., interferon-inducible proteins and major histocompatibility complex molecules). Additionally, unique roles for glutathione metabolism and eicosanoid metabolism in modulating susceptibility and resistance, respectively, were implicated. Overall, this research provides novel insight into the role of immunometabolism in LRMD pathology, and suggests the potential for unique control points for LRMD progression and severity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA