Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell ; 180(1): 22-24, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31785834

RESUMEN

Responses to hypoxia are regulated by oxygen-dependent degradation of kingdom-specific proteins in animals and plants. Masson et al. (2019) identified and characterized the mammalian counterpart of an oxygen-sensing pathway previously only observed in plants. Alongside other recent findings identifying novel oxygen sensors, this provides new insights into oxygen-sensing origins and mechanisms in eukaryotes.


Asunto(s)
Eucariontes , Oxígeno , Animales , Cisteína-Dioxigenasa , Hipoxia , Plantas
2.
Nature ; 606(7914): 565-569, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650430

RESUMEN

Flowering plants (angiosperms) can grow at extreme altitudes, and have been observed growing as high as 6,400 metres above sea level1,2; however, the molecular mechanisms that enable plant adaptation specifically to altitude are unknown. One distinguishing feature of increasing altitude is a reduction in the partial pressure of oxygen (pO2). Here we investigated the relationship between altitude and oxygen sensing in relation to chlorophyll biosynthesis-which requires molecular oxygen3-and hypoxia-related gene expression. We show that in etiolated seedlings of angiosperm species, steady-state levels of the phototoxic chlorophyll precursor protochlorophyllide are influenced by sensing of atmospheric oxygen concentration. In Arabidopsis thaliana, this is mediated by the PLANT CYSTEINE OXIDASE (PCO) N-degron pathway substrates GROUP VII ETHYLENE RESPONSE FACTOR transcription factors (ERFVIIs). ERFVIIs positively regulate expression of FLUORESCENT IN BLUE LIGHT (FLU), which represses the first committed step of chlorophyll biosynthesis, forming an inactivation complex with tetrapyrrole synthesis enzymes that are negatively regulated by ERFVIIs, thereby suppressing protochlorophyllide. In natural populations representing diverse angiosperm clades, we find oxygen-dependent altitudinal clines for steady-state levels of protochlorophyllide, expression of inactivation complex components and hypoxia-related genes. Finally, A. thaliana accessions from contrasting altitudes display altitude-dependent ERFVII activity and accumulation. We thus identify a mechanism for genetic adaptation to absolute altitude through alteration of the sensitivity of the oxygen-sensing system.


Asunto(s)
Aclimatación , Altitud , Arabidopsis , Oxígeno , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxígeno/metabolismo , Presión Parcial , Protoclorofilida/metabolismo
3.
Trends Biochem Sci ; 44(4): 293-295, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29233616

RESUMEN

N-term 2017 was the first international meeting to bring together researchers from diverse disciplines with a shared interest in protein N-terminal modifications and the N-end rule pathway of ubiquitin-mediated proteolysis, providing a platform for interdisciplinary cross-kingdom discussions and collaborations, as well as strengthening the visibility of this growing scientific community.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Proteostasis , Humanos
4.
New Phytol ; 239(4): 1281-1299, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37320971

RESUMEN

Increasing drought phenomena pose a serious threat to agricultural productivity. Although plants have multiple ways to respond to the complexity of drought stress, the underlying mechanisms of stress sensing and signaling remain unclear. The role of the vasculature, in particular the phloem, in facilitating inter-organ communication is critical and poorly understood. Combining genetic, proteomic and physiological approaches, we investigated the role of AtMC3, a phloem-specific member of the metacaspase family, in osmotic stress responses in Arabidopsis thaliana. Analyses of the proteome in plants with altered AtMC3 levels revealed differential abundance of proteins related to osmotic stress pointing into a role of the protein in water-stress-related responses. Overexpression of AtMC3 conferred drought tolerance by enhancing the differentiation of specific vascular tissues and maintaining higher levels of vascular-mediated transportation, while plants lacking the protein showed an impaired response to drought and inability to respond effectively to the hormone abscisic acid. Overall, our data highlight the importance of AtMC3 and vascular plasticity in fine-tuning early drought responses at the whole plant level without affecting growth or yield.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistencia a la Sequía , Floema/metabolismo , Proteómica , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Sequías , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo
5.
Mol Cell ; 53(3): 369-79, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24462115

RESUMEN

Nitric oxide (NO) is an important signaling compound in prokaryotes and eukaryotes. In plants, NO regulates critical developmental transitions and stress responses. Here, we identify a mechanism for NO sensing that coordinates responses throughout development based on targeted degradation of plant-specific transcriptional regulators, the group VII ethylene response factors (ERFs). We show that the N-end rule pathway of targeted proteolysis targets these proteins for destruction in the presence of NO, and we establish them as critical regulators of diverse NO-regulated processes, including seed germination, stomatal closure, and hypocotyl elongation. Furthermore, we define the molecular mechanism for NO control of germination and crosstalk with abscisic acid (ABA) signaling through ERF-regulated expression of ABSCISIC ACID INSENSITIVE5 (ABI5). Our work demonstrates how NO sensing is integrated across multiple physiological processes by direct modulation of transcription factor stability and identifies group VII ERFs as central hubs for the perception of gaseous signals in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Óxido Nítrico/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Germinación/fisiología , Óxido Nítrico/farmacología , Oxígeno/farmacología , Estomas de Plantas/efectos de los fármacos , Proteolisis , Transducción de Señal , Factores de Transcripción/efectos de los fármacos
6.
New Phytol ; 229(1): 126-139, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32043277

RESUMEN

VERNALIZATION2 (VRN2), an angiosperm-specific subunit of the polycomb repressive complex 2 (PRC2), is an oxygen (O2 )-regulated target of the PCO branch of the PRT6 N-degron pathway of ubiquitin-mediated proteolysis. How this post-translational regulation coordinates VRN2 activity remains to be fully established. Here we use Arabidopsis thaliana ecotypes, mutants and transgenic lines to determine how control of VRN2 stability contributes to its functions during plant development. VRN2 localizes to endogenous hypoxic regions in aerial and root tissues. In the shoot apex, VRN2 differentially modulates flowering time dependent on photoperiod, whilst its presence in lateral root primordia and the root apical meristem negatively regulates root system architecture. Ectopic accumulation of VRN2 does not enhance its effects on flowering, but does potentiate its repressive effects on root growth. In late-flowering vernalization-dependent ecotypes, VRN2 is only active outside meristems when its proteolysis is inhibited in response to cold exposure, as its function requires concomitant cold-triggered increases in other PRC2 subunits and cofactors. We conclude that the O2 -sensitive N-degron of VRN2 has a dual function, confining VRN2 to meristems and primordia, where it has specific developmental roles, whilst also permitting broad accumulation outside of meristems in response to environmental cues, leading to other functions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Unión al ADN , Ubiquitina-Proteína Ligasas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Fotoperiodo
7.
New Phytol ; 221(2): 988-1000, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30117535

RESUMEN

The N-end rule pathway is a highly conserved constituent of the ubiquitin proteasome system, yet little is known about its biological roles. Here we explored the role of the N-end rule pathway in the plant immune response. We investigated the genetic influences of components of the pathway and known protein substrates on physiological, biochemical and metabolic responses to pathogen infection. We show that the glutamine (Gln) deamidation and cysteine (Cys) oxidation branches are both components of the plant immune system, through the E3 ligase PROTEOLYSIS (PRT)6. In Arabidopsis thaliana Gln-specific amino-terminal (Nt)-amidase (NTAQ1) controls the expression of specific defence-response genes, activates the synthesis pathway for the phytoalexin camalexin and influences basal resistance to the hemibiotroph pathogen Pseudomonas syringae pv tomato (Pst). The Nt-Cys ETHYLENE RESPONSE FACTOR VII transcription factor substrates enhance pathogen-induced stomatal closure. Transgenic barley with reduced HvPRT6 expression showed enhanced resistance to Ps. japonica and Blumeria graminis f. sp. hordei, indicating a conserved role of the pathway. We propose that that separate branches of the N-end rule pathway act as distinct components of the plant immune response in flowering plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Pseudomonas syringae/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Ascomicetos/fisiología , Etilenos/metabolismo , Hordeum/genética , Hordeum/inmunología , Hordeum/microbiología , Oxidación-Reducción , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Estomas de Plantas/genética , Estomas de Plantas/inmunología , Estomas de Plantas/microbiología , Proteolisis , Ubiquitina-Proteína Ligasas/genética
8.
New Phytol ; 218(3): 1106-1126, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29168982

RESUMEN

The N-end rule pathway of targeted protein degradation is an important regulator of diverse processes in plants but detailed knowledge regarding its influence on the proteome is lacking. To investigate the impact of the Arg/N-end rule pathway on the proteome of etiolated seedlings, we used terminal amine isotopic labelling of substrates with tandem mass tags (TMT-TAILS) for relative quantification of N-terminal peptides in prt6, an Arabidopsis thaliana N-end rule mutant lacking the E3 ligase PROTEOLYSIS6 (PRT6). TMT-TAILS identified over 4000 unique N-terminal peptides representing c. 2000 protein groups. Forty-five protein groups exhibited significantly increased N-terminal peptide abundance in prt6 seedlings, including cruciferins, major seed storage proteins, which were regulated by Group VII Ethylene Response Factor (ERFVII) transcription factors, known substrates of PRT6. Mobilisation of endosperm α-cruciferin was delayed in prt6 seedlings. N-termini of several proteases were downregulated in prt6, including RD21A. RD21A transcript, protein and activity levels were downregulated in a largely ERFVII-dependent manner. By contrast, cathepsin B3 protein and activity were upregulated by ERFVIIs independent of transcript. We propose that the PRT6 branch of the pathway regulates protease activities in a complex manner and optimises storage reserve mobilisation in the transition from seed to seedling via control of ERFVII action.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arginina/metabolismo , Endopeptidasas/metabolismo , Proteolisis , Proteómica/métodos , Proteínas de Almacenamiento de Semillas/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Péptidos/química , Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/metabolismo
9.
J Exp Bot ; 69(19): 4583-4590, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29846689

RESUMEN

Post-translational modifications are essential mediators between stimuli from development or the environment and adaptive transcriptional patterns. Recent data allow a first glimpse at how two modifications, phosphorylation and sumoylation, act interdependently to modulate stress responses. In particular, many components of the SUMO conjugation system are phosphoproteins, and some regulators and enzymes of protein phosphorylation can be sumoylated. Equally important, however, a number of proteins can be subject to both modifications. These substrates also have the capacity to connect stimuli transmitted via sumoylation with those transmitted via phosphorylation. As a prime example, we review data suggesting that nitrate reductase is a hub that integrates cues from these two modifications. Powerful proteomics approaches allowed the identification of additional common substrates, paving the way for studies to understand, on a broader basis, the cross-talk of phosphorylation with sumoylation and how it contributes to plant growth.


Asunto(s)
Fosforilación , Proteínas de Plantas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/fisiología , Proteoma
10.
Nature ; 479(7373): 415-8, 2011 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22020279

RESUMEN

Plants and animals are obligate aerobes, requiring oxygen for mitochondrial respiration and energy production. In plants, an unanticipated decline in oxygen availability (hypoxia), as caused by roots becoming waterlogged or foliage submergence, triggers changes in gene transcription and messenger RNA translation that promote anaerobic metabolism and thus sustain substrate-level ATP production. In contrast to animals, oxygen sensing has not been ascribed to a mechanism of gene regulation in response to oxygen deprivation in plants. Here we show that the N-end rule pathway of targeted proteolysis acts as a homeostatic sensor of severe low oxygen levels in Arabidopsis, through its regulation of key hypoxia-response transcription factors. We found that plants lacking components of the N-end rule pathway constitutively express core hypoxia-response genes and are more tolerant of hypoxic stress. We identify the hypoxia-associated ethylene response factor group VII transcription factors of Arabidopsis as substrates of this pathway. Regulation of these proteins by the N-end rule pathway occurs through a characteristic conserved motif at the amino terminus initiating with Met-Cys. Enhanced stability of one of these proteins, HRE2, under low oxygen conditions improves hypoxia survival and reveals a molecular mechanism for oxygen sensing in plants via the evolutionarily conserved N-end rule pathway. SUB1A-1, a major determinant of submergence tolerance in rice, was shown not to be a substrate for the N-end rule pathway despite containing the N-terminal motif, indicating that it is uncoupled from N-end rule pathway regulation, and that enhanced stability may relate to the superior tolerance of Sub1 rice varieties to multiple abiotic stresses.


Asunto(s)
Arabidopsis/metabolismo , Hipoxia de la Célula , Homeostasis , Aclimatación , Anaerobiosis/efectos de los fármacos , Anaerobiosis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/genética , Etilenos/farmacología , Inundaciones , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Homeostasis/efectos de los fármacos , Inmersión , Oryza/efectos de los fármacos , Oryza/metabolismo , Oxígeno/metabolismo , Oxígeno/farmacología , Proteolisis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Factores de Transcripción/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(23): 8685-90, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24912195

RESUMEN

Morphogenesis occurs in 3D space over time and is guided by coordinated gene expression programs. Here we use postembryonic development in Arabidopsis plants to investigate the genetic control of growth. We demonstrate that gene expression driving the production of the growth-stimulating hormone gibberellic acid and downstream growth factors is first induced within the radicle tip of the embryo. The center of cell expansion is, however, spatially displaced from the center of gene expression. Because the rapidly growing cells have very different geometry from that of those at the tip, we hypothesized that mechanical factors may contribute to this growth displacement. To this end we developed 3D finite-element method models of growing custom-designed digital embryos at cellular resolution. We used this framework to conceptualize how cell size, shape, and topology influence tissue growth and to explore the interplay of geometrical and genetic inputs into growth distribution. Our simulations showed that mechanical constraints are sufficient to explain the disconnect between the experimentally observed spatiotemporal patterns of gene expression and early postembryonic growth. The center of cell expansion is the position where genetic and mechanical facilitators of growth converge. We have thus uncovered a mechanism whereby 3D cellular geometry helps direct where genetically specified growth takes place.


Asunto(s)
Arabidopsis/embriología , Forma de la Célula , Tamaño de la Célula , Semillas/citología , Algoritmos , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Giberelinas/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Microscopía Confocal , Modelos Biológicos , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Estrés Mecánico
12.
BMC Plant Biol ; 16(1): 251, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27835985

RESUMEN

BACKGROUND: The induction of alcohol fermentation in roots is a plant adaptive response to flooding stress and oxygen deprivation. Available transcriptomic data suggest that fermentation-related genes are also frequently induced in roots infected with gall forming pathogens, but the biological significance of this induction is unclear. In this study, we addressed the role of hypoxia responses in Arabidopsis roots during infection by the clubroot agent Plasmodiophora brassicae. RESULTS: The hypoxia-related gene markers PYRUVATE DECARBOXYLASE 1 (PDC1), PYRUVATE DECARBOXYLASE 2 (PDC2) and ALCOHOL DEHYDROGENASE 1 (ADH1) were induced during secondary infection by two isolates of P. brassicae, eH and e2. PDC2 was highly induced as soon as 7 days post inoculation (dpi), i.e., before the development of gall symptoms, and GUS staining revealed that ADH1 induction was localised in infected cortical cells of root galls at 21 dpi. Clubroot symptoms were significantly milder in the pdc1 and pdc2 mutants compared with Col-0, but a null T-DNA insertional mutation of ADH1 did not affect clubroot susceptibility. The Arg/N-end rule pathway of ubiquitin-mediated proteolysis controls oxygen sensing in plants. Mutants of components of this pathway, ate1 ate2 and prt6, that both exhibit constitutive hypoxia responses, showed enhanced clubroot symptoms. In contrast, gall development was reduced in quintuple and sextuple mutants where the activity of all oxygen-sensing Group VII Ethylene Response Factor transcription factors (ERFVIIs) is absent (erfVII and prt6 erfVII). CONCLUSIONS: Our data demonstrate that the induction of PDC1 and PDC2 during the secondary infection of roots by P. brassicae contributes positively to clubroot development, and that this is controlled by oxygen-sensing through ERFVIIs. The absence of any major role of ADH1 in symptom development may also suggest that PDC activity could contribute to the formation of galls through the activation of a PDH bypass.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/parasitología , Plasmodiophorida/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/parasitología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología
13.
Plant Biotechnol J ; 14(1): 40-50, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25657015

RESUMEN

Increased tolerance of crops to low oxygen (hypoxia) during flooding is a key target for food security. In Arabidopsis thaliana (L.) Heynh., the N-end rule pathway of targeted proteolysis controls plant responses to hypoxia by regulating the stability of group VII ethylene response factor (ERFVII) transcription factors, controlled by the oxidation status of amino terminal (Nt)-cysteine (Cys). Here, we show that the barley (Hordeum vulgare L.) ERFVII BERF1 is a substrate of the N-end rule pathway in vitro. Furthermore, we show that Nt-Cys acts as a sensor for hypoxia in vivo, as the stability of the oxygen-sensor reporter protein MCGGAIL-GUS increased in waterlogged transgenic plants. Transgenic RNAi barley plants, with reduced expression of the N-end rule pathway N-recognin E3 ligase PROTEOLYSIS6 (HvPRT6), showed increased expression of hypoxia-associated genes and altered seed germination phenotypes. In addition, in response to waterlogging, transgenic plants showed sustained biomass, enhanced yield, retention of chlorophyll, and enhanced induction of hypoxia-related genes. HvPRT6 RNAi plants also showed reduced chlorophyll degradation in response to continued darkness, often associated with waterlogged conditions. Barley Targeting Induced Local Lesions IN Genomes (TILLING) lines, containing mutant alleles of HvPRT6, also showed increased expression of hypoxia-related genes and phenotypes similar to RNAi lines. We conclude that the N-end rule pathway represents an important target for plant breeding to enhance tolerance to waterlogging in barley and other cereals.


Asunto(s)
Adaptación Fisiológica , Hordeum/genética , Hordeum/fisiología , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Agua , Alelos , Secuencia de Aminoácidos , Clorofila/metabolismo , Cisteína/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Germinación/genética , Mutación/genética , Fenotipo , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Estabilidad Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/genética , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
14.
New Phytol ; 211(4): 1188-94, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27439310

RESUMEN

Contents 1188 I. 1188 II. 1189 III. 1190 IV. 1191 V. 1192 1192 References 1192 SUMMARY: The amino- (N-) terminus (Nt) of a protein can undergo a diverse array of co- and posttranslational modifications. Many of these create degradation signals (N-degrons) that mediate protein destruction via the N-end rule pathway of ubiquitin-mediated proteolysis. In plants, the N-end rule pathway has emerged as a major system for regulated control of protein stability. Nt-arginylation-dependent degradation regulates multiple growth, development and stress responses, and recently identified functions of Nt-acetylation can also be linked to effects on the in vivo half-lives of Nt-acetylated proteins. There is also increasing evidence that N-termini could act as important protein stability determinants in plastids. Here we review recent advances in our understanding of the relationship between the nature of protein N-termini, Nt-processing events and proteolysis in plants.


Asunto(s)
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Transducción de Señal , Estrés Fisiológico
15.
Plant Physiol ; 169(1): 23-31, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25944828

RESUMEN

The group VII ethylene response factors (ERFVIIs) are plant-specific transcription factors that have emerged as important regulators of abiotic and biotic stress responses, in particular, low-oxygen stress. A defining feature of ERFVIIs is their conserved N-terminal domain, which renders them oxygen- and nitric oxide (NO)-dependent substrates of the N-end rule pathway of targeted proteolysis. In the presence of these gases, ERFVIIs are destabilized, whereas an absence of either permits their accumulation; ERFVIIs therefore coordinate plant homeostatic responses to oxygen availability and control a wide range of NO-mediated processes. ERFVIIs have a variety of context-specific protein and gene interaction partners, and also modulate gibberellin and abscisic acid signaling to regulate diverse developmental processes and stress responses. This update discusses recent advances in our understanding of ERFVII regulation and function, highlighting their role as central regulators of gaseous signal transduction at the interface of ethylene, oxygen, and NO signaling.


Asunto(s)
Etilenos/metabolismo , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Transducción de Señal , Secuencias de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Homeostasis , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Proteolisis , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Plant Physiol ; 167(1): 200-15, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25429110

RESUMEN

Pectin methylesterase (PME) controls the methylesterification status of pectins and thereby determines the biophysical properties of plant cell walls, which are important for tissue growth and weakening processes. We demonstrate here that tissue-specific and spatiotemporal alterations in cell wall pectin methylesterification occur during the germination of garden cress (Lepidium sativum). These cell wall changes are associated with characteristic expression patterns of PME genes and resultant enzyme activities in the key seed compartments CAP (micropylar endosperm) and RAD (radicle plus lower hypocotyl). Transcriptome and quantitative real-time reverse transcription-polymerase chain reaction analysis as well as PME enzyme activity measurements of separated seed compartments, including CAP and RAD, revealed distinct phases during germination. These were associated with hormonal and compartment-specific regulation of PME group 1, PME group 2, and PME inhibitor transcript expression and total PME activity. The regulatory patterns indicated a role for PME activity in testa rupture (TR). Consistent with a role for cell wall pectin methylesterification in TR, treatment of seeds with PME resulted in enhanced testa permeability and promoted TR. Mathematical modeling of transcript expression changes in germinating garden cress and Arabidopsis (Arabidopsis thaliana) seeds suggested that group 2 PMEs make a major contribution to the overall PME activity rather than acting as PME inhibitors. It is concluded that regulated changes in the degree of pectin methylesterification through CAP- and RAD-specific PME and PME inhibitor expression play a crucial role during Brassicaceae seed germination.


Asunto(s)
Hidrolasas de Éster Carboxílico/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Germinación/fisiología , Lepidium sativum/fisiología , Proteínas de Plantas/fisiología , Semillas/fisiología , Hidrolasas de Éster Carboxílico/biosíntesis , Hidrolasas de Éster Carboxílico/genética , Endospermo/enzimología , Endospermo/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Germinación/genética , Hipocótilo/enzimología , Hipocótilo/fisiología , Lepidium sativum/enzimología , Lepidium sativum/genética , Proteínas de Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/enzimología
17.
Plant Physiol ; 166(2): 1022-32, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25118255

RESUMEN

DELLA proteins are the master negative regulators in gibberellin (GA) signaling acting in the nucleus as transcriptional regulators. The current view of DELLA action indicates that their activity relies on the physical interaction with transcription factors (TFs). Therefore, the identification of TFs through which DELLAs regulate GA responses is key to understanding these responses from a mechanistic point of view. Here, we have determined the TF interactome of the Arabidopsis (Arabidopsis thaliana) DELLA protein GIBBERELLIN INSENSITIVE and screened a collection of conditional TF overexpressors in search of those that alter GA sensitivity. As a result, we have found RELATED TO APETALA2.3, an ethylene-induced TF belonging to the group VII ETHYLENE RESPONSE FACTOR of the APETALA2/ethylene responsive element binding protein superfamily, as a DELLA interactor with physiological relevance in the context of apical hook development. The combination of transactivation assays and chromatin immunoprecipitation indicates that the interaction with GIBBERELLIN INSENSITIVE impairs the activity of RELATED TO APETALA2.3 on the target promoters. This mechanism represents a unique node in the cross regulation between the GA and ethylene signaling pathways controlling differential growth during apical hook development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Giberelinas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Bases , Cartilla de ADN , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Unión Proteica , Activación Transcripcional
18.
Plant Cell ; 24(6): 2483-96, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22739828

RESUMEN

Abscisic acid (ABA) is a key hormone for plant growth, development, and stress adaptation. Perception of ABA through four types of receptors has been reported. We show here that impairment of ABA perception through the PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) branch reduces vegetative growth and seed production and leads to a severe open stomata and ABA-insensitive phenotype, even though other branches for ABA perception remain functional. An Arabidopsis thaliana sextuple mutant impaired in six PYR/PYL receptors, namely PYR1, PYL1, PYL2, PYL4, PYL5, and PYL8, was able to germinate and grow even on 100 µM ABA. Whole-rosette stomatal conductance (Gst) measurements revealed that leaf transpiration in the sextuple pyr/pyl mutant was higher than in the ABA-deficient aba3-1 or ABA-insensitive snrk2.6 mutants. The gradually increasing Gst values of plants lacking three, four, five, and six PYR/PYLs indicate quantitative regulation of stomatal aperture by this family of receptors. The sextuple mutant lacked ABA-mediated activation of SnRK2s, and ABA-responsive gene expression was dramatically impaired as was reported in snrk2.2/2.3/2.6. In summary, these results show that ABA perception by PYR/PYLs plays a major role in regulation of seed germination and establishment, basal ABA signaling required for vegetative and reproductive growth, stomatal aperture, and transcriptional response to the hormone.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/genética , Estomas de Plantas/fisiología , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , Proteínas de Transporte de Membrana/metabolismo , Mutación , Fenotipo , Hojas de la Planta/fisiología , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
19.
Proc Natl Acad Sci U S A ; 109(19): 7571-6, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22523240

RESUMEN

The hormone gibberellin (GA) is a key regulator of plant growth. Many of the components of the gibberellin signal transduction [e.g., GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and DELLA], biosynthesis [e.g., GA 20-oxidase (GA20ox) and GA3ox], and deactivation pathways have been identified. Gibberellin binds its receptor, GID1, to form a complex that mediates the degradation of DELLA proteins. In this way, gibberellin relieves DELLA-dependent growth repression. However, gibberellin regulates expression of GID1, GA20ox, and GA3ox, and there is also evidence that it regulates DELLA expression. In this paper, we use integrated mathematical modeling and experiments to understand how these feedback loops interact to control gibberellin signaling. Model simulations are in good agreement with in vitro data on the signal transduction and biosynthesis pathways and in vivo data on the expression levels of gibberellin-responsive genes. We find that GA-GID1 interactions are characterized by two timescales (because of a lid on GID1 that can open and close slowly relative to GA-GID1 binding and dissociation). Furthermore, the model accurately predicts the response to exogenous gibberellin after a number of chemical and genetic perturbations. Finally, we investigate the role of the various feedback loops in gibberellin signaling. We find that regulation of GA20ox transcription plays a significant role in both modulating the level of endogenous gibberellin and generating overshoots after the removal of exogenous gibberellin. Moreover, although the contribution of other individual feedback loops seems relatively small, GID1 and DELLA transcriptional regulation acts synergistically with GA20ox feedback.


Asunto(s)
Algoritmos , Giberelinas/metabolismo , Modelos Genéticos , Transcripción Genética/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retroalimentación Fisiológica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/farmacología , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Transcripción Genética/efectos de los fármacos
20.
Plant Physiol ; 163(1): 205-15, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23858430

RESUMEN

Seed germination is a critical stage in the plant life cycle and the first step toward successful plant establishment. Therefore, understanding germination is of important ecological and agronomical relevance. Previous research revealed that different seed compartments (testa, endosperm, and embryo) control germination, but little is known about the underlying spatial and temporal transcriptome changes that lead to seed germination. We analyzed genome-wide expression in germinating Arabidopsis (Arabidopsis thaliana) seeds with both temporal and spatial detail and provide Web-accessible visualizations of the data reported (vseed.nottingham.ac.uk). We show the potential of this high-resolution data set for the construction of meaningful coexpression networks, which provide insight into the genetic control of germination. The data set reveals two transcriptional phases during germination that are separated by testa rupture. The first phase is marked by large transcriptome changes as the seed switches from a dry, quiescent state to a hydrated and active state. At the end of this first transcriptional phase, the number of differentially expressed genes between consecutive time points drops. This increases again at testa rupture, the start of the second transcriptional phase. Transcriptome data indicate a role for mechano-induced signaling at this stage and subsequently highlight the fates of the endosperm and radicle: senescence and growth, respectively. Finally, using a phylotranscriptomic approach, we show that expression levels of evolutionarily young genes drop during the first transcriptional phase and increase during the second phase. Evolutionarily old genes show an opposite pattern, suggesting a more conserved transcriptome prior to the completion of germination.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Germinación/genética , Transcripción Genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Semillas/genética , Semillas/crecimiento & desarrollo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA