Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 33(4): 882-900, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33681994

RESUMEN

Vitamin A deficiency remains prevalent in parts of Asia, Latin America, and sub-Saharan Africa where maize (Zea mays) is a food staple. Extensive natural variation exists for carotenoids in maize grain. Here, to understand its genetic basis, we conducted a joint linkage and genome-wide association study of the US maize nested association mapping panel. Eleven of the 44 detected quantitative trait loci (QTL) were resolved to individual genes. Six of these were correlated expression and effect QTL (ceeQTL), showing strong correlations between RNA-seq expression abundances and QTL allelic effect estimates across six stages of grain development. These six ceeQTL also had the largest percentage of phenotypic variance explained, and in major part comprised the three to five loci capturing the bulk of genetic variation for each trait. Most of these ceeQTL had strongly correlated QTL allelic effect estimates across multiple traits. These findings provide an in-depth genome-level understanding of the genetic and molecular control of carotenoids in plants. In addition, these findings provide a roadmap to accelerate breeding for provitamin A and other priority carotenoid traits in maize grain that should be readily extendable to other cereals.


Asunto(s)
Carotenoides/metabolismo , Semillas/genética , Zea mays/genética , Zea mays/metabolismo , Epistasis Genética , Variación Genética , Estudio de Asociación del Genoma Completo , Fenotipo , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Semillas/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34686607

RESUMEN

Very little is known about how domestication was constrained by the quantitative genetic architecture of crop progenitors and how quantitative genetic architecture was altered by domestication. Yang et al. [C. J. Yang et al., Proc. Natl. Acad. Sci. U.S.A. 116, 5643-5652 (2019)] drew multiple conclusions about how genetic architecture influenced and was altered by maize domestication based on one sympatric pair of teosinte and maize populations. To test the generality of their conclusions, we assayed the structure of genetic variances, genetic correlations among traits, strength of selection during domestication, and diversity in genetic architecture within teosinte and maize. Our results confirm that additive genetic variance is decreased, while dominance genetic variance is increased, during maize domestication. The genetic correlations are moderately conserved among traits between teosinte and maize, while the genetic variance-covariance matrices (G-matrices) of teosinte and maize are quite different, primarily due to changes in the submatrix for reproductive traits. The inferred long-term selection intensities during domestication were weak, and the neutral hypothesis was rejected for reproductive and environmental response traits, suggesting that they were targets of selection during domestication. The G-matrix of teosinte imposed considerable constraint on selection during the early domestication process, and constraint increased further along the domestication trajectory. Finally, we assayed variation among populations and observed that genetic architecture is generally conserved among populations within teosinte and maize but is radically different between teosinte and maize. While selection drove changes in essentially all traits between teosinte and maize, selection explains little of the difference in domestication traits among populations within teosinte or maize.


Asunto(s)
Productos Agrícolas/genética , Genes de Plantas , Zea mays/genética , Evolución Molecular , Flores , Interacción Gen-Ambiente , Reproducción , Zea mays/fisiología
3.
PLoS Genet ; 17(12): e1009797, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34928949

RESUMEN

Inbreeding depression is the reduction in fitness and vigor resulting from mating of close relatives observed in many plant and animal species. The extent to which the genetic load of mutations contributing to inbreeding depression is due to large-effect mutations versus variants with very small individual effects is unknown and may be affected by population history. We compared the effects of outcrossing and self-fertilization on 18 traits in a landrace population of maize, which underwent a population bottleneck during domestication, and a neighboring population of its wild relative teosinte. Inbreeding depression was greater in maize than teosinte for 15 of 18 traits, congruent with the greater segregating genetic load in the maize population that we predicted from sequence data. Parental breeding values were highly consistent between outcross and selfed offspring, indicating that additive effects determine most of the genetic value even in the presence of strong inbreeding depression. We developed a novel linkage scan to identify quantitative trait loci (QTL) representing large-effect rare variants carried by only a single parent, which were more important in teosinte than maize. Teosinte also carried more putative juvenile-acting lethal variants identified by segregation distortion. These results suggest a mixture of mostly polygenic, small-effect partially recessive effects in linkage disequilibrium underlying inbreeding depression, with an additional contribution from rare larger-effect variants that was more important in teosinte but depleted in maize following the domestication bottleneck. Purging associated with the maize domestication bottleneck may have selected against some large effect variants, but polygenic load is harder to purge and overall segregating mutational burden increased in maize compared to teosinte.


Asunto(s)
Domesticación , Depresión Endogámica/genética , Sitios de Carácter Cuantitativo/genética , Zea mays/genética , Genes de Plantas , Variación Genética/genética , Fenotipo , Fitomejoramiento , Proteínas de Plantas/genética , Selección Genética/genética , Zea mays/crecimiento & desarrollo
4.
New Phytol ; 238(2): 737-749, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36683443

RESUMEN

Crop genetic diversity for climate adaptations is globally partitioned. We performed experimental evolution in maize to understand the response to selection and how plant germplasm can be moved across geographical zones. Initialized with a common population of tropical origin, artificial selection on flowering time was performed for two generations at eight field sites spanning 25° latitude, a 2800 km transect. We then jointly tested all selection lineages across the original sites of selection, for the target trait and 23 other traits. Modeling intergenerational shifts in a physiological reaction norm revealed separate components for flowering-time plasticity. Generalized and local modes of selection altered the plasticity of each lineage, leading to a latitudinal pattern in the responses to selection that were strongly driven by photoperiod. This transformation led to widespread changes in developmental, architectural, and yield traits, expressed collectively in an environment-dependent manner. Furthermore, selection for flowering time alone alleviated a maladaptive syndrome and improved yields for tropical maize in the temperate zone. Our findings show how phenotypic selection can rapidly shift the flowering phenology and plasticity of maize. They also demonstrate that selecting crops to local conditions can accelerate adaptation to climate change.


Asunto(s)
Flores , Zea mays , Flores/genética , Zea mays/genética , Fenotipo , Fotoperiodo
5.
J Exp Bot ; 74(21): 6749-6759, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37599380

RESUMEN

The presence or absence of awns-whether wheat heads are 'bearded' or 'smooth' - is the most visible phenotype distinguishing wheat cultivars. Previous studies suggest that awns may improve yields in heat or water-stressed environments, but the exact contribution of awns to yield differences remains unclear. Here we leverage historical phenotypic, genotypic, and climate data for wheat (Triticum aestivum) to estimate the yield effects of awns under different environmental conditions over a 12-year period in the southeastern USA. Lines were classified as awned or awnless based on sequence data, and observed heading dates were used to associate grain fill periods of each line in each environment with climatic data and grain yield. In most environments, awn suppression was associated with higher yields, but awns were associated with better performance in heat-stressed environments more common at southern locations. Wheat breeders in environments where awns are only beneficial in some years may consider selection for awned lines to reduce year-to-year yield variability, and with an eye towards future climates.


Asunto(s)
Grano Comestible , Triticum , Triticum/genética , Fenotipo , Respuesta al Choque Térmico , Sudeste de Estados Unidos
6.
PLoS Genet ; 16(5): e1008791, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32407310

RESUMEN

The genetics of domestication has been extensively studied ever since the rediscovery of Mendel's law of inheritance and much has been learned about the genetic control of trait differences between crops and their ancestors. Here, we ask how domestication has altered genetic architecture by comparing the genetic architecture of 18 domestication traits in maize and its ancestor teosinte using matched populations. We observed a strongly reduced number of QTL for domestication traits in maize relative to teosinte, which is consistent with the previously reported depletion of additive variance by selection during domestication. We also observed more dominance in maize than teosinte, likely a consequence of selective removal of additive variants. We observed that large effect QTL have low minor allele frequency (MAF) in both maize and teosinte. Regions of the genome that are strongly differentiated between teosinte and maize (high FST) explain less quantitative variation in maize than teosinte, suggesting that, in these regions, allelic variants were brought to (or near) fixation during domestication. We also observed that genomic regions of high recombination explain a disproportionately large proportion of heritable variance both before and after domestication. Finally, we observed that about 75% of the additive variance in both teosinte and maize is "missing" in the sense that it cannot be ascribed to detectable QTL and only 25% of variance maps to specific QTL. This latter result suggests that morphological evolution during domestication is largely attributable to very large numbers of QTL of very small effect.


Asunto(s)
Variación Genética , Sitios de Carácter Cuantitativo , Zea mays/genética , Domesticación , Flujo Génico , Frecuencia de los Genes , Genes de Plantas , Genética de Población , Carácter Cuantitativo Heredable , Selección Genética , Zea mays/clasificación
7.
Theor Appl Genet ; 135(8): 2799-2816, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35781582

RESUMEN

KEY MESSAGE: GS and PS performed similarly in improving resistance to FER and FUM content. With cheaper and faster genotyping methods, GS has the potential to be more efficient than PS. Fusarium verticillioides is a common maize (Zea mays L.) pathogen that causes Fusarium ear rot (FER) and produces the mycotoxin fumonisin (FUM). This study empirically compared phenotypic selection (PS) and genomic selection (GS) for improving FER and FUM resistance. Three intermating generations of recurrent GS were conducted in the same time frame and from a common base population as two generations of recurrent PS. Lines sampled from each PS and GS cycle were evaluated in three North Carolina environments in 2020. We observed similar cumulative responses to GS and PS, representing decreases of about 50% of mean FER and FUM compared to the base population. The first cycle of GS was more effective than later cycles. PS and GS both achieved about 70% of predicted total gain from selection for FER, but only about 26% of predicted gains for FUM, suggesting that heritability for FUM was overestimated. We observed a 20% decrease in genetic marker variation from PS and 30% decrease from GS. Our greatest challenge was our inability to quickly obtain dense and consistent set of marker genotypes across generations of GS. Practical implementation of GS in individual small-scale breeding programs will require cheaper and faster genotyping methods, and such technological advances will present opportunities to significantly optimize selection and mating schemes for future GS efforts beyond what we were able to achieve in this study.


Asunto(s)
Fumonisinas , Fusarium , Fusarium/fisiología , Genómica/métodos , Fitomejoramiento , Enfermedades de las Plantas/genética , Zea mays/genética
8.
Proc Natl Acad Sci U S A ; 116(12): 5643-5652, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30842282

RESUMEN

The process of evolution under domestication has been studied using phylogenetics, population genetics-genomics, quantitative trait locus (QTL) mapping, gene expression assays, and archaeology. Here, we apply an evolutionary quantitative genetic approach to understand the constraints imposed by the genetic architecture of trait variation in teosinte, the wild ancestor of maize, and the consequences of domestication on genetic architecture. Using modern teosinte and maize landrace populations as proxies for the ancestor and domesticate, respectively, we estimated heritabilities, additive and dominance genetic variances, genetic-by-environment variances, genetic correlations, and genetic covariances for 18 domestication-related traits using realized genomic relationships estimated from genome-wide markers. We found a reduction in heritabilities across most traits, and the reduction is stronger in reproductive traits (size and numbers of grains and ears) than vegetative traits. We observed larger depletion in additive genetic variance than dominance genetic variance. Selection intensities during domestication were weak for all traits, with reproductive traits showing the highest values. For 17 of 18 traits, neutral divergence is rejected, suggesting they were targets of selection during domestication. Yield (total grain weight) per plant is the sole trait that selection does not appear to have improved in maize relative to teosinte. From a multivariate evolution perspective, we identified a strong, nonneutral divergence between teosinte and maize landrace genetic variance-covariance matrices (G-matrices). While the structure of G-matrix in teosinte posed considerable genetic constraint on early domestication, the maize landrace G-matrix indicates that the degree of constraint is more unfavorable for further evolution along the same trajectory.


Asunto(s)
Genética de Población/métodos , Zea mays/genética , Agricultura , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/fisiología , Domesticación , Grano Comestible/genética , Evolución Molecular , Genómica , Fenotipo , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Selección Genética/genética
9.
BMC Genomics ; 22(1): 402, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34058974

RESUMEN

BACKGROUND: Genetic variation in growth over the course of the season is a major source of grain yield variation in wheat, and for this reason variants controlling heading date and plant height are among the best-characterized in wheat genetics. While the major variants for these traits have been cloned, the importance of these variants in contributing to genetic variation for plant growth over time is not fully understood. Here we develop a biparental population segregating for major variants for both plant height and flowering time to characterize the genetic architecture of the traits and identify additional novel QTL. RESULTS: We find that additive genetic variation for both traits is almost entirely associated with major and moderate-effect QTL, including four novel heading date QTL and four novel plant height QTL. FT2 and Vrn-A3 are proposed as candidate genes underlying QTL on chromosomes 3A and 7A, while Rht8 is mapped to chromosome 2D. These mapped QTL also underlie genetic variation in a longitudinal analysis of plant growth over time. The oligogenic architecture of these traits is further demonstrated by the superior trait prediction accuracy of QTL-based prediction models compared to polygenic genomic selection models. CONCLUSIONS: In a population constructed from two modern wheat cultivars adapted to the southeast U.S., almost all additive genetic variation in plant growth traits is associated with known major variants or novel moderate-effect QTL. Major transgressive segregation was observed in this population despite the similar plant height and heading date characters of the parental lines. This segregation is being driven primarily by a small number of mapped QTL, instead of by many small-effect, undetected QTL. As most breeding populations in the southeast U.S. segregate for known QTL for these traits, genetic variation in plant height and heading date in these populations likely emerges from similar combinations of major and moderate effect QTL. We can make more accurate and cost-effective prediction models by targeted genotyping of key SNPs.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Mapeo Cromosómico , Genómica , Fenotipo , Fitomejoramiento , Triticum/genética
10.
New Phytol ; 228(3): 1055-1069, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32521050

RESUMEN

Macroorganisms' genotypes shape their phenotypes, which in turn shape the habitat available to potential microbial symbionts. This influence of host genotype on microbiome composition has been demonstrated in many systems; however, most previous studies have either compared unrelated genotypes or delved into molecular mechanisms. As a result, it is currently unclear whether the heritability of host-associated microbiomes follows similar patterns to the heritability of other complex traits. We take a new approach to this question by comparing the microbiomes of diverse maize inbred lines and their F1 hybrid offspring, which we quantified in both rhizosphere and leaves of field-grown plants using 16S-v4 and ITS1 amplicon sequencing. We show that inbred lines and hybrids differ consistently in the composition of bacterial and fungal rhizosphere communities, as well as leaf-associated fungal communities. A wide range of microbiome features display heterosis within individual crosses, consistent with patterns for nonmicrobial maize phenotypes. For leaf microbiomes, these results were supported by the observation that broad-sense heritability in hybrids was substantially higher than narrow-sense heritability. Our results support our hypothesis that at least some heterotic host traits affect microbiome composition in maize.


Asunto(s)
Microbiota , Rizosfera , Vigor Híbrido/genética , Microbiota/genética , Hojas de la Planta/genética , Zea mays/genética
11.
Proc Natl Acad Sci U S A ; 114(1): E57-E66, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27999177

RESUMEN

Leaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D1), which is responsible for the major leaf shapes in cotton. The l-D1 locus is not only of agricultural importance in cotton, but through pioneering chimeric and morphometric studies, it has contributed to fundamental knowledge about leaf development. Here we show that an HD-Zip transcription factor homologous to the LATE MERISTEM IDENTITY1 (LMI1) gene of Arabidopsis is the causal gene underlying the l-D1 locus. The classical okra leaf shape allele has a 133-bp tandem duplication in the promoter, correlated with elevated expression, whereas an 8-bp deletion in the third exon of the presumed wild-type normal allele causes a frame-shifted and truncated coding sequence. Our results indicate that subokra is the ancestral leaf shape of tetraploid cotton that gave rise to the okra allele and that normal is a derived mutant allele that came to predominate and define the leaf shape of cultivated cotton. Virus-induced gene silencing (VIGS) of the LMI1-like gene in an okra variety was sufficient to induce normal leaf formation. The developmental changes in leaves conferred by this gene are associated with a photosynthetic transcriptomic signature, substantiating its use by breeders to produce a superior cotton ideotype.


Asunto(s)
Gossypium/genética , Gossypium/fisiología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Factores de Transcripción/genética , Secuencia de Aminoácidos/genética , Mutación del Sistema de Lectura/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Regiones Promotoras Genéticas/genética
12.
Theor Appl Genet ; 132(4): 1247-1261, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30680419

RESUMEN

KEY MESSAGE: The optimization of training populations and the use of diagnostic markers as fixed effects increase the predictive ability of genomic prediction models in a cooperative wheat breeding panel. Plant breeding programs often have access to a large amount of historical data that is highly unbalanced, particularly across years. This study examined approaches to utilize these data sets as training populations to integrate genomic selection into existing pipelines. We used cross-validation to evaluate predictive ability in an unbalanced data set of 467 winter wheat (Triticum aestivum L.) genotypes evaluated in the Gulf Atlantic Wheat Nursery from 2008 to 2016. We evaluated the impact of different training population sizes and training population selection methods (Random, Clustering, PEVmean and PEVmean1) on predictive ability. We also evaluated inclusion of markers associated with major genes as fixed effects in prediction models for heading date, plant height, and resistance to powdery mildew (caused by Blumeria graminis f. sp. tritici). Increases in predictive ability as the size of the training population increased were more evident for Random and Clustering training population selection methods than for PEVmean and PEVmean1. The selection methods based on minimization of the prediction error variance (PEV) outperformed the Random and Clustering methods across all the population sizes. Major genes added as fixed effects always improved model predictive ability, with the greatest gains coming from combinations of multiple genes. Maximum predictabilities among all prediction methods were 0.64 for grain yield, 0.56 for test weight, 0.71 for heading date, 0.73 for plant height, and 0.60 for powdery mildew resistance. Our results demonstrate the utility of combining unbalanced phenotypic records with genome-wide SNP marker data for predicting the performance of untested genotypes.


Asunto(s)
Genómica , Estaciones del Año , Selección Genética , Triticum/genética , Alelos , Marcadores Genéticos , Genética de Población , Genotipo , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal
13.
J Hered ; 109(3): 333-338, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28992108

RESUMEN

Genomic scans for genes that show the signature of past selection have been widely applied to a number of species and have identified a large number of selection candidate genes. In cultivated maize (Zea mays ssp. mays) selection scans have identified several hundred candidate domestication genes by comparing nucleotide diversity and differentiation between maize and its progenitor, teosinte (Z. mays ssp. parviglumis). One of these is a gene called zea agamous-like1 (zagl1), a MADS-box transcription factor, that is known for its function in the control of flowering time. To determine the trait(s) controlled by zagl1 that was (were) the target(s) of selection during maize domestication, we created a set of recombinant chromosome isogenic lines that differ for the maize versus teosinte alleles of zagl1 and which carry cross-overs between zagl1 and its neighbor genes. These lines were grown in a randomized trial and scored for flowering time and domestication related traits. The results indicated that the maize versus teosinte alleles of zagl1 affect flowering time as expected, as well as multiple traits related to ear size with the maize allele conferring larger ears with more kernels. Our results suggest that zagl1 may have been under selection during domestication to increase the size of the maize ear.


Asunto(s)
Flores/genética , Proteínas de Plantas/genética , Zea mays/genética , Alelos , Sustitución de Aminoácidos , Domesticación , Proteínas de Dominio MADS/genética , Modelos Genéticos , Selección Genética , Zea mays/fisiología
14.
Phytopathology ; 108(12): 1475-1485, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29989846

RESUMEN

The fungus Fusarium verticillioides can infect maize ears, contaminating the grain with mycotoxins, including fumonisins. This global public health threat can be managed by breeding maize varieties that are resistant to colonization by F. verticillioides and by sorting grain after harvest to reduce fumonisin levels in food systems. Here, we employed two F. verticillioides inoculation techniques representing distinct infection pathways to dissect ear symptomatology and morphological resistance mechanisms in a diverse panel of maize inbred lines. The "point" method involved penetrating the ear with a spore-coated toothpick and the "inundative" method introduced a liquid spore suspension under the husk of the ear. We evaluated quantitative and qualitative indicators of external and internal symptom severity as low-cost proxies for fumonisin contamination, and found that kernel bulk density was predictive of fumonisin levels (78 to 84% sensitivity; 97 to 99% specificity). Inundative inoculation resulted in greater disease severity and fumonisin contamination than point inoculation. We also found that the two inoculation methods implicated different ear tissues in defense, with cob morphology being a more important component of resistance under point inoculation. Across both inoculation methods, traits related to cob size were positively associated with disease severity and fumonisin content. Our work demonstrates that (i) the use of diverse modes of inoculation is necessary for combining complementary mechanisms of genetic resistance, (ii) kernel bulk density can be used effectively as a proxy for fumonisin levels, and (iii) trade-offs may exist between yield potential and resistance to fumonisin contamination.


Asunto(s)
Fumonisinas/análisis , Fusarium/química , Enfermedades de las Plantas/microbiología , Zea mays/microbiología , Genotipo , Semillas/microbiología
15.
Plant Physiol ; 172(3): 1787-1803, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27670817

RESUMEN

Physiological leaf spotting, or flecking, is a mild-lesion phenotype observed on the leaves of several commonly used maize (Zea mays) inbred lines and has been anecdotally linked to enhanced broad-spectrum disease resistance. Flecking was assessed in the maize nested association mapping (NAM) population, comprising 4,998 recombinant inbred lines from 25 biparental families, and in an association population, comprising 279 diverse maize inbreds. Joint family linkage analysis was conducted with 7,386 markers in the NAM population. Genome-wide association tests were performed with 26.5 million single-nucleotide polymorphisms (SNPs) in the NAM population and with 246,497 SNPs in the association population, resulting in the identification of 18 and three loci associated with variation in flecking, respectively. Many of the candidate genes colocalizing with associated SNPs are similar to genes that function in plant defense response via cell wall modification, salicylic acid- and jasmonic acid-dependent pathways, redox homeostasis, stress response, and vesicle trafficking/remodeling. Significant positive correlations were found between increased flecking, stronger defense response, increased disease resistance, and increased pest resistance. A nonlinear relationship with total kernel weight also was observed whereby lines with relatively high levels of flecking had, on average, lower total kernel weight. We present evidence suggesting that mild flecking could be used as a selection criterion for breeding programs trying to incorporate broad-spectrum disease resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Hojas de la Planta/genética , Zea mays/genética , Alelos , Mapeo Cromosómico , Genética de Población , Estudio de Asociación del Genoma Completo , Endogamia , Luz , Fenotipo , Hojas de la Planta/efectos de la radiación , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Especies Reactivas de Oxígeno/metabolismo , Semillas/genética , Zea mays/efectos de la radiación
16.
Theor Appl Genet ; 130(11): 2445-2461, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28852799

RESUMEN

KEY MESSAGE: Water-soluble carbohydrate accumulation can be selected in wheat breeding programs with consideration of genetic × environmental interactions and relationships with other important characteristics such as relative maturity and nitrogen concentration, although the correlation between WSC traits and grain yield is low and inconsistent. The potential to increase the genetic capacity for water-soluble carbohydrate (WSC) accumulation is an opportunity to improve the drought tolerance capability of rainfed wheat varieties, particularly in environments where terminal drought is a significant constraint to wheat production. A population of elite breeding germplasm was characterized to investigate the potential for selection of improved WSC concentration and total amount in water deficit and well-watered environments. Accumulation of WSC involves complex interactions with other traits and the environment. For both WSC concentration (WSCC) and total WSC per area (WSCA), strong genotype × environment interactions were reflected in the clear grouping of experiments into well-watered and water deficit environment clusters. Genetic correlations between experiments were high within clusters. Heritability for WSCC was larger than for WSCA, and significant associations were observed in both well-watered and water deficit experiment clusters between the WSC traits and nitrogen concentration, tillering, grains per m2, and grain size. However, correlations between grain yield and WSCC or WSCA were weak and variable, suggesting that selection for these traits is not a better strategy for improving yield under drought than direct selection for yield.


Asunto(s)
Carbohidratos/biosíntesis , Interacción Gen-Ambiente , Triticum/genética , Agua/fisiología , Sequías , Genotipo , Modelos Lineales , Modelos Genéticos , Fenotipo , Fitomejoramiento , Semillas/crecimiento & desarrollo , Selección Genética , Triticum/metabolismo
17.
PLoS Genet ; 10(8): e1004562, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25166276

RESUMEN

Much remains unknown of molecular events controlling the plant hypersensitive defense response (HR), a rapid localized cell death that limits pathogen spread and is mediated by resistance (R-) genes. Genetic control of the HR is hard to quantify due to its microscopic and rapid nature. Natural modifiers of the ectopic HR phenotype induced by an aberrant auto-active R-gene (Rp1-D21), were mapped in a population of 3,381 recombinant inbred lines from the maize nested association mapping population. Joint linkage analysis was conducted to identify 32 additive but no epistatic quantitative trait loci (QTL) using a linkage map based on more than 7000 single nucleotide polymorphisms (SNPs). Genome-wide association (GWA) analysis of 26.5 million SNPs was conducted after adjusting for background QTL. GWA identified associated SNPs that colocalized with 44 candidate genes. Thirty-six of these genes colocalized within 23 of the 32 QTL identified by joint linkage analysis. The candidate genes included genes predicted to be in involved programmed cell death, defense response, ubiquitination, redox homeostasis, autophagy, calcium signalling, lignin biosynthesis and cell wall modification. Twelve of the candidate genes showed significant differential expression between isogenic lines differing for the presence of Rp1-D21. Low but significant correlations between HR-related traits and several previously-measured disease resistance traits suggested that the genetic control of these traits was substantially, though not entirely, independent. This study provides the first system-wide analysis of natural variation that modulates the HR response in plants.


Asunto(s)
Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo/genética , Zea mays/genética , Mapeo Cromosómico , Desequilibrio de Ligamiento , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple
18.
BMC Plant Biol ; 15: 35, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25652257

RESUMEN

BACKGROUND: Corn borers are the primary maize pest; their feeding on the pith results in stem damage and yield losses. In this study, we performed a genome-wide association study (GWAS) to identify SNPs associated with resistance to Mediterranean corn borer in a maize diversity panel using a set of more than 240,000 SNPs. RESULTS: Twenty five SNPs were significantly associated with three resistance traits: 10 were significantly associated with tunnel length, 4 with stem damage, and 11 with kernel resistance. Allelic variation at each significant SNP was associated with from 6 to 9% of the phenotypic variance. A set of genes containing or physically close to these SNPs are proposed as candidate genes for borer resistance, supported by their involvement in plant defense-related mechanisms in previously published evidence. The linkage disequilibrium decayed (r(2) < 0.10) rapidly within short distance, suggesting high resolution of GWAS associations. CONCLUSIONS: Most of the candidate genes found in this study are part of signaling pathways, others act as regulator of expression under biotic stress condition, and a few genes are encoding enzymes with antibiotic effect against insects such as the cystatin1 gene and the defensin proteins. These findings contribute to the understanding the complex relationship between plant-insect interactions.


Asunto(s)
Genes de Plantas , Estudio de Asociación del Genoma Completo , Mariposas Nocturnas/fisiología , Zea mays/genética , Animales , Polimorfismo de Nucleótido Simple , Zea mays/parasitología
19.
Proc Natl Acad Sci U S A ; 109(28): E1913-21, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22711828

RESUMEN

Teosinte, the progenitor of maize, is restricted to tropical environments in Mexico and Central America. The pre-Columbian spread of maize from its center of origin in tropical Southern Mexico to the higher latitudes of the Americas required postdomestication selection for adaptation to longer day lengths. Flowering time of teosinte and tropical maize is delayed under long day lengths, whereas temperate maize evolved a reduced sensitivity to photoperiod. We measured flowering time of the maize nested association and diverse association mapping panels in the field under both short and long day lengths, and of a maize-teosinte mapping population under long day lengths. Flowering time in maize is a complex trait affected by many genes and the environment. Photoperiod response is one component of flowering time involving a subset of flowering time genes whose effects are strongly influenced by day length. Genome-wide association and targeted high-resolution linkage mapping identified ZmCCT, a homologue of the rice photoperiod response regulator Ghd7, as the most important gene affecting photoperiod response in maize. Under long day lengths ZmCCT alleles from diverse teosintes are consistently expressed at higher levels and confer later flowering than temperate maize alleles. Many maize inbred lines, including some adapted to tropical regions, carry ZmCCT alleles with no sensitivity to day length. Indigenous farmers of the Americas were remarkably successful at selecting on genetic variation at key genes affecting the photoperiod response to create maize varieties adapted to vastly diverse environments despite the hindrance of the geographic axis of the Americas and the complex genetic control of flowering time.


Asunto(s)
Mapeo Cromosómico/métodos , Proteínas de Plantas/genética , Proteínas Represoras/genética , Zea mays/genética , Alelos , Cromosomas de las Plantas , Genes de Plantas , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos , México , Modelos Genéticos , Fenotipo , Fotoperiodo , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Proteínas Represoras/metabolismo , Factores de Tiempo
20.
Nat Genet ; 38(2): 203-8, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16380716

RESUMEN

As population structure can result in spurious associations, it has constrained the use of association studies in human and plant genetics. Association mapping, however, holds great promise if true signals of functional association can be separated from the vast number of false signals generated by population structure. We have developed a unified mixed-model approach to account for multiple levels of relatedness simultaneously as detected by random genetic markers. We applied this new approach to two samples: a family-based sample of 14 human families, for quantitative gene expression dissection, and a sample of 277 diverse maize inbred lines with complex familial relationships and population structure, for quantitative trait dissection. Our method demonstrates improved control of both type I and type II error rates over other methods. As this new method crosses the boundary between family-based and structured association samples, it provides a powerful complement to currently available methods for association mapping.


Asunto(s)
Técnicas Genéticas , Herencia/genética , Modelos Genéticos , Zea mays/genética , Expresión Génica , Variación Genética , Humanos , Fenotipo , Carácter Cuantitativo Heredable , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA