Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Childs Nerv Syst ; 39(1): 295-299, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35849142

RESUMEN

BACKGROUND: Venous malformations (VMs) are slow-flow vascular anomalies present at birth that enlarge during adolescence, subsequently causing thrombosis, hemorrhage, and pain. CASE PRESENTATION: We describe a case of an adolescent male presenting with a large scalp venous malformation. Given the size and location of the lesion, a hybrid approach employing both sclerotherapy and surgical resection was utilized. The VM was successfully removed without complication. CONCLUSION: A hybrid approach is a safe and effective treatment consideration for immediate management of large venous malformation in higher-risk locations.


Asunto(s)
Escleroterapia , Malformaciones Vasculares , Adolescente , Recién Nacido , Humanos , Niño , Masculino , Cuero Cabelludo , Malformaciones Vasculares/cirugía , Resultado del Tratamiento
2.
J Neurosurg Pediatr ; 33(5): 405-410, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428005

RESUMEN

OBJECTIVE: Among patients with a history of prior lipomyelomeningocele repair, an association between increased lumbosacral angle (LSA) and cord retethering has been described. The authors sought to build a predictive algorithm to determine which complex tethered cord patients will develop the symptoms of spinal cord retethering after initial surgical repair with a focus on spinopelvic parameters. METHODS: An electronic medical record database was reviewed to identify patients with complex tethered cord (e.g., lipomyelomeningocele, lipomyeloschisis, myelocystocele) who underwent detethering before 12 months of age between January 1, 2008, and June 30, 2022. Descriptive statistics were used to characterize the patient population. The Caret package in R was used to develop a machine learning model that predicted symptom development by using spinopelvic parameters. RESULTS: A total of 72 patients were identified (28/72 [38.9%] were male). The most commonly observed dysraphism was lipomyelomeningocele (41/72 [56.9%]). The mean ± SD age at index MRI was 2.1 ± 2.2 months, at which time 87.5% of patients (63/72) were asymptomatic. The mean ± SD lumbar lordosis at the time of index MRI was 23.8° ± 11.1°, LSA was 36.5° ± 12.3°, sacral inclination was 30.4° ± 11.3°, and sacral slope was 23.0° ± 10.5°. Overall, 39.6% (25/63) of previously asymptomatic patients developed new symptoms during the mean ± SD follow-up period of 44.9 ± 47.2 months. In the recursive partitioning model, patients whose LSA increased at a rate ≥ 5.84°/year remained asymptomatic, whereas those with slower rates of LSA change experienced neurological decline (sensitivity 77.5%, specificity 84.9%, positive predictive value 88.9%, and negative predictive value 70.9%). CONCLUSIONS: This is the first study to build a machine learning algorithm to predict symptom development of spinal cord retethering after initial surgical repair. The authors found that, after initial surgery, patients who demonstrate a slower rate of LSA change per year may be at risk of developing neurological symptoms.


Asunto(s)
Algoritmos , Aprendizaje Automático , Meningomielocele , Defectos del Tubo Neural , Humanos , Defectos del Tubo Neural/cirugía , Defectos del Tubo Neural/diagnóstico por imagen , Femenino , Masculino , Meningomielocele/cirugía , Meningomielocele/diagnóstico por imagen , Lactante , Estudios Retrospectivos , Procedimientos Neuroquirúrgicos/métodos , Imagen por Resonancia Magnética , Valor Predictivo de las Pruebas
3.
bioRxiv ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39149264

RESUMEN

Pediatric brain cancer is the leading cause of disease-related mortality in children, and many aggressive tumors still lack effective treatment strategies. We characterized aberrant alternative splicing across pediatric brain tumors, identifying pediatric high-grade gliomas (HGGs) among the most heterogeneous. Annotating these events with UniProt, we identified 11,940 splice events in 5,368 genes leading to potential protein function changes. We discovered CDC-like kinase 1 (CLK1) is aberrantly spliced to include exon 4, resulting in a gain of two phosphorylation sites and subsequent activation. Inhibition of CLK1 with Cirtuvivint significantly decreased both cell viability and proliferation in the pediatric HGG KNS-42 cell line. Morpholino-mediated depletion of CLK1 exon 4 splicing reduced RNA expression, protein abundance, and cell viability with concurrent differential expression of 78 cancer genes and differential splicing at functional sites in 193 cancer genes. Our findings highlight a dependency of pediatric HGGs on CLK1 and represent a promising therapeutic strategy.

4.
Neurooncol Adv ; 5(1): vdad049, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37197736

RESUMEN

Diffuse leptomeningeal glioneuronal tumor (DLGNT) occurs predominantly in children and is typically characterized by diffuse leptomeningeal lesions throughout the neuroaxis with focal segments of parenchymal involvement. Recent reports have identified cases without diffuse leptomeningeal involvement that retain classic glioneuronal features on histology. In this report, we present a case of a 4-year-old boy with a large cystic-solid intramedullary spinal cord lesion that on surgical biopsy revealed a biphasic astrocytic tumor with sparsely distributed eosinophilic granular bodies and Rosenthal fibers. Next-generation sequencing revealed a KIAA1549-BRAF fusion, 1p/19q codeletion, and lack of an IDH1 mutation. Methylation profiling demonstrated a calibrated class score of 0.98 for DLGNT and copy number loss of 1p. Despite the morphologic similarities to pilocytic astrocytoma and the lack of oligodendroglial/neuronal components or leptomeningeal dissemination, the molecular profile was definitive in classifying the tumor as DLGNT. This case highlights the importance of molecular and genetic testing in the characterization of pediatric central nervous system tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA