Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 609(7925): 136-143, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35709828

RESUMEN

Gastrulation controls the emergence of cellular diversity and axis patterning in the early embryo. In mammals, this transformation is orchestrated by dynamic signalling centres at the interface of embryonic and extraembryonic tissues1-3. Elucidating the molecular framework of axis formation in vivo is fundamental for our understanding of human development4-6 and to advance stem-cell-based regenerative approaches7. Here we illuminate early gastrulation of marmoset embryos in utero using spatial transcriptomics and stem-cell-based embryo models. Gaussian process regression-based 3D transcriptomes delineate the emergence of the anterior visceral endoderm, which is hallmarked by conserved (HHEX, LEFTY2, LHX1) and primate-specific (POSTN, SDC4, FZD5) factors. WNT signalling spatially coordinates the formation of the primitive streak in the embryonic disc and is counteracted by SFRP1 and SFRP2 to sustain pluripotency in the anterior domain. Amnion specification occurs at the boundaries of the embryonic disc through ID1, ID2 and ID3 in response to BMP signalling, providing a developmental rationale for amnion differentiation of primate pluripotent stem cells (PSCs). Spatial identity mapping demonstrates that primed marmoset PSCs exhibit the highest similarity to the anterior embryonic disc, whereas naive PSCs resemble the preimplantation epiblast. Our 3D transcriptome models reveal the molecular code of lineage specification in the primate embryo and provide an in vivo reference to decipher human development.


Asunto(s)
Callithrix , Gastrulación , Útero , Animales , Callithrix/embriología , Diferenciación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Endodermo/citología , Endodermo/embriología , Femenino , Perfilación de la Expresión Génica , Estratos Germinativos/citología , Estratos Germinativos/embriología , Humanos , Células Madre Pluripotentes/citología
2.
Nature ; 610(7930): 143-153, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36007540

RESUMEN

Embryonic stem (ES) cells can undergo many aspects of mammalian embryogenesis in vitro1-5, but their developmental potential is substantially extended by interactions with extraembryonic stem cells, including trophoblast stem (TS) cells, extraembryonic endoderm stem (XEN) cells and inducible XEN (iXEN) cells6-11. Here we assembled stem cell-derived embryos in vitro from mouse ES cells, TS cells and iXEN cells and showed that they recapitulate the development of whole natural mouse embryo in utero up to day 8.5 post-fertilization. Our embryo model displays headfolds with defined forebrain and midbrain regions and develops a beating heart-like structure, a trunk comprising a neural tube and somites, a tail bud containing neuromesodermal progenitors, a gut tube, and primordial germ cells. This complete embryo model develops within an extraembryonic yolk sac that initiates blood island development. Notably, we demonstrate that the neurulating embryo model assembled from Pax6-knockout ES cells aggregated with wild-type TS cells and iXEN cells recapitulates the ventral domain expansion of the neural tube that occurs in natural, ubiquitous Pax6-knockout embryos. Thus, these complete embryoids are a powerful in vitro model for dissecting the roles of diverse cell lineages and genes in development. Our results demonstrate the self-organization ability of ES cells and two types of extraembryonic stem cells to reconstitute mammalian development through and beyond gastrulation to neurulation and early organogenesis.


Asunto(s)
Embrión de Mamíferos , Gastrulación , Modelos Biológicos , Neurulación , Organogénesis , Animales , Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Células Madre Embrionarias/citología , Endodermo/citología , Endodermo/embriología , Corazón/embriología , Mesencéfalo/embriología , Ratones , Tubo Neural/embriología , Factor de Transcripción PAX6/deficiencia , Factor de Transcripción PAX6/genética , Prosencéfalo/embriología , Somitos/embriología
3.
Development ; 149(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36125063

RESUMEN

The early specification and rapid growth of extraembryonic membranes are distinctive hallmarks of primate embryogenesis. These complex tasks are resolved through an intricate combination of signals controlling the induction of extraembryonic lineages and, at the same time, safeguarding the pluripotent epiblast. Here, we delineate the signals orchestrating primate epiblast and amnion identity. We encapsulated marmoset pluripotent stem cells into agarose microgels and identified culture conditions for the development of epiblast- and amnion-spheroids. Spatial identity mapping authenticated spheroids generated in vitro by comparison with marmoset embryos in vivo. We leveraged the microgel system to functionally interrogate the signalling environment of the post-implantation primate embryo. Single-cell profiling of the resulting spheroids demonstrated that activin/nodal signalling is required for embryonic lineage identity. BMP4 promoted amnion formation and maturation, which was counteracted by FGF signalling. Our combination of microgel culture, single-cell profiling and spatial identity mapping provides a powerful approach to decipher the essential cues for embryonic and extraembryonic lineage formation in primate embryogenesis.


Asunto(s)
Microgeles , Activinas , Amnios , Animales , Callithrix , Diferenciación Celular , Estratos Germinativos , Sefarosa
4.
Chem Rev ; 123(9): 5571-5611, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37126602

RESUMEN

Novel and improved biocatalysts are increasingly sourced from libraries via experimental screening. The success of such campaigns is crucially dependent on the number of candidates tested. Water-in-oil emulsion droplets can replace the classical test tube, to provide in vitro compartments as an alternative screening format, containing genotype and phenotype and enabling a readout of function. The scale-down to micrometer droplet diameters and picoliter volumes brings about a >107-fold volume reduction compared to 96-well-plate screening. Droplets made in automated microfluidic devices can be integrated into modular workflows to set up multistep screening protocols involving various detection modes to sort >107 variants a day with kHz frequencies. The repertoire of assays available for droplet screening covers all seven enzyme commission (EC) number classes, setting the stage for widespread use of droplet microfluidics in everyday biochemical experiments. We review the practicalities of adapting droplet screening for enzyme discovery and for detailed kinetic characterization. These new ways of working will not just accelerate discovery experiments currently limited by screening capacity but profoundly change the paradigms we can probe. By interfacing the results of ultrahigh-throughput droplet screening with next-generation sequencing and deep learning, strategies for directed evolution can be implemented, examined, and evaluated.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Bioensayo , Emulsiones , Agua , Cinética , Ensayos Analíticos de Alto Rendimiento/métodos , Técnicas Analíticas Microfluídicas/métodos
5.
Nat Chem Biol ; 18(10): 1096-1103, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35799064

RESUMEN

The abundance of recorded protein sequence data stands in contrast to the small number of experimentally verified functional annotation. Here we screened a million-membered metagenomic library at ultrahigh throughput in microfluidic droplets for ß-glucuronidase activity. We identified SN243, a genuine ß-glucuronidase with little homology to previously studied enzymes of this type, as a glycoside hydrolase 3 family member. This glycoside hydrolase family contains only one recently added ß-glucuronidase, showing that a functional metagenomic approach can shed light on assignments that are currently 'unpredictable' by bioinformatics. Kinetic analyses of SN243 characterized it as a promiscuous catalyst and structural analysis suggests regions of divergence from homologous glycoside hydrolase 3 members creating a wide-open active site. With a screening throughput of >107 library members per day, picolitre-volume microfluidic droplets enable functional assignments that complement current enzyme database dictionaries and provide bridgeheads for the annotation of unexplored sequence space.


Asunto(s)
Glucuronidasa , Metagenómica , Biblioteca de Genes , Glucuronidasa/genética , Glucuronidasa/metabolismo , Glicósido Hidrolasas/química , Metagenoma
6.
Microb Cell Fact ; 23(1): 169, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858677

RESUMEN

BACKGROUND: In vitro expression involves the utilization of the cellular transcription and translation machinery in an acellular context to produce one or more proteins of interest and has found widespread application in synthetic biology and in pharmaceutical biomanufacturing. Most in vitro expression systems available are active at moderate temperatures, but to screen large libraries of natural or artificial genetic diversity for highly thermostable enzymes or enzyme variants, it is instrumental to enable protein synthesis at high temperatures. OBJECTIVES: Develop an in vitro expression system operating at high temperatures compatible with enzymatic assays and with technologies that enable ultrahigh-throughput protein expression in reduced volumes, such as microfluidic water-in-oil (w/o) droplets. RESULTS: We produced cell-free extracts from Thermus thermophilus for in vitro translation including thermostable enzymatic cascades for energy regeneration and a moderately thermostable RNA polymerase for transcription, which ultimately limited the temperature of protein synthesis. The yield was comparable or superior to other thermostable in vitro expression systems, while the preparation procedure is much simpler and can be suited to different Thermus thermophilus strains. Furthermore, these extracts have enabled in vitro expression in microfluidic droplets at high temperatures for the first time. CONCLUSIONS: Cell-free extracts from Thermus thermophilus represent a simpler alternative to heavily optimized or pure component thermostable in vitro expression systems. Moreover, due to their compatibility with droplet microfluidics and enzyme assays at high temperatures, the reported system represents a convenient gateway for enzyme screening at higher temperatures with ultrahigh-throughput.


Asunto(s)
Biosíntesis de Proteínas , Thermus thermophilus , Transcripción Genética , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Thermus thermophilus/enzimología , Microfluídica/métodos , Sistema Libre de Células , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Temperatura , Calor , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
7.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34772801

RESUMEN

Exchanges of protein sequence modules support leaps in function unavailable through point mutations during evolution. Here we study the role of the two RAD51-interacting modules within the eight binding BRC repeats of BRCA2. We created 64 chimeric repeats by shuffling these modules and measured their binding to RAD51. We found that certain shuffled module combinations were stronger binders than any of the module combinations in the natural repeats. Surprisingly, the contribution from the two modules was poorly correlated with affinities of natural repeats, with a weak BRC8 repeat containing the most effective N-terminal module. The binding of the strongest chimera, BRC8-2, to RAD51 was improved by -2.4 kCal/mol compared to the strongest natural repeat, BRC4. A crystal structure of RAD51:BRC8-2 complex shows an improved interface fit and an extended ß-hairpin in this repeat. BRC8-2 was shown to function in human cells, preventing the formation of nuclear RAD51 foci after ionizing radiation.


Asunto(s)
Unión Proteica/fisiología , Recombinasa Rad51/metabolismo , Secuencia de Aminoácidos , Proteína BRCA2/metabolismo , Línea Celular Tumoral , Humanos
8.
J Am Chem Soc ; 145(2): 1083-1096, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36583539

RESUMEN

Finding new mechanistic solutions for biocatalytic challenges is key in the evolutionary adaptation of enzymes, as well as in devising new catalysts. The recent release of man-made substances into the environment provides a dynamic testing ground for observing biocatalytic innovation at play. Phosphate triesters, used as pesticides, have only recently been introduced into the environment, where they have no natural counterpart. Enzymes have rapidly evolved to hydrolyze phosphate triesters in response to this challenge, converging onto the same mechanistic solution, which requires bivalent cations as a cofactor for catalysis. In contrast, the previously identified metagenomic promiscuous hydrolase P91, a homologue of acetylcholinesterase, achieves slow phosphotriester hydrolysis mediated by a metal-independent Cys-His-Asp triad. Here, we probe the evolvability of this new catalytic motif by subjecting P91 to directed evolution. By combining a focused library approach with the ultrahigh throughput of droplet microfluidics, we increase P91's activity by a factor of ≈360 (to a kcat/KM of ≈7 × 105 M-1 s-1) in only two rounds of evolution, rivaling the catalytic efficiencies of naturally evolved, metal-dependent phosphotriesterases. Unlike its homologue acetylcholinesterase, P91 does not suffer suicide inhibition; instead, fast dephosphorylation rates make the formation of the covalent adduct rather than its hydrolysis rate-limiting. This step is improved by directed evolution, with intermediate formation accelerated by 2 orders of magnitude. Combining focused, combinatorial libraries with the ultrahigh throughput of droplet microfluidics can be leveraged to identify and enhance mechanistic strategies that have not reached high efficiency in nature, resulting in alternative reagents with novel catalytic machineries.


Asunto(s)
Hidrolasas , Hidrolasas de Triéster Fosfórico , Acetilcolinesterasa , Hidrolasas de Triéster Fosfórico/genética , Hidrolasas de Triéster Fosfórico/metabolismo , Biocatálisis , Catálisis
9.
J Am Chem Soc ; 145(37): 20355-20364, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37671930

RESUMEN

Plastic upcycling through catalytic transformations is an attractive concept to valorize waste, but the clean and energy-efficient production of high-value products from plastics remains challenging. Here, we introduce chemoenzymatic photoreforming as a process coupling enzymatic pretreatment and solar-driven reforming of polyester plastics under mild temperatures and pH to produce clean H2 and value-added chemicals. Chemoenzymatic photoreforming demonstrates versatility in upcycling polyester films and nanoplastics to produce H2 at high yields reaching ∼103-104 µmol gsub-1 and activities at >500 µmol gcat-1 h-1. Enzyme-treated plastics were also used as electron donors for photocatalytic CO2-to-syngas conversion with a phosphonated cobalt bis(terpyridine) catalyst immobilized on TiO2 nanoparticles (TiO2|CotpyP). Finally, techno-economic analyses reveal that the chemoenzymatic photoreforming approach has the potential to drastically reduce H2 production costs to levels comparable to market prices of H2 produced from fossil fuels while maintaining low CO2-equivalent emissions.

10.
Anal Chem ; 95(10): 4597-4604, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36848587

RESUMEN

Droplet microfluidics is a valuable method to "beat the odds" in high throughput screening campaigns such as directed evolution, where valuable hits are infrequent and large library sizes are required. Absorbance-based sorting expands the range of enzyme families that can be subjected to droplet screening by expanding possible assays beyond fluorescence detection. However, absorbance-activated droplet sorting (AADS) is currently ∼10-fold slower than typical fluorescence-activated droplet sorting (FADS), meaning that, in comparison, a larger portion of sequence space is inaccessible due to throughput constraints. Here we improve AADS to reach kHz sorting speeds in an order of magnitude increase over previous designs, with close-to-ideal sorting accuracy. This is achieved by a combination of (i) the use of refractive index matching oil that improves signal quality by removal of side scattering (increasing the sensitivity of absorbance measurements); (ii) a sorting algorithm capable of sorting at this increased frequency with an Arduino Due; and (iii) a chip design that transmits product detection better into sorting decisions without false positives, namely a single-layered inlet to space droplets further apart and injections of "bias oil" providing a fluidic barrier preventing droplets from entering the incorrect sorting channel. The updated ultra-high-throughput absorbance-activated droplet sorter increases the effective sensitivity of absorbance measurements through better signal quality at a speed that matches the more established fluorescence-activated sorting devices.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Ensayos Analíticos de Alto Rendimiento
11.
Genome Res ; 30(5): 711-723, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32424071

RESUMEN

Shine-Dalgarno sequences (SD) in prokaryotic mRNA facilitate protein translation by pairing with rRNA in ribosomes. Although conventionally defined as AG-rich motifs, recent genomic surveys reveal great sequence diversity, questioning how SD functions. Here, we determined the molecular fitness (i.e., translation efficiency) of 49 synthetic 9-nt SD genotypes in three distinct mRNA contexts in Escherichia coli We uncovered generic principles governing the SD fitness landscapes: (1) Guanine contents, rather than canonical SD motifs, best predict the fitness of both synthetic and endogenous SD; (2) the genotype-fitness correlation of SD promotes its evolvability by steadily supplying beneficial mutations across fitness landscapes; and (3) the frequency and magnitude of deleterious mutations increase with background fitness, and adjacent nucleotides in SD show stronger epistasis. Epistasis results from disruption of the continuous base pairing between SD and rRNA. This "chain-breaking" epistasis creates sinkholes in SD fitness landscapes and may profoundly impact the evolution and function of prokaryotic translation initiation and other RNA-mediated processes. Collectively, our work yields functional insights into the SD sequence variation in prokaryotic genomes, identifies a simple design principle to guide bioengineering and bioinformatic analysis of SD, and illuminates the fundamentals of fitness landscapes and molecular evolution.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/química , Secuencia de Bases , Epistasis Genética , Evolución Molecular , Genotipo , Guanina/análisis , Mutación , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Termodinámica
12.
New Phytol ; 240(6): 2353-2371, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37823344

RESUMEN

Xyloglucan is an abundant polysaccharide in many primary cell walls and in the human diet. Decoration of its α-xylosyl sidechains with further sugars is critical for plant growth, even though the sugars themselves vary considerably between species. Plants in the Ericales order - prevalent in human diets - exhibit ß1,2-linked xylosyl decorations. The biosynthetic enzymes responsible for adding these xylosyl decorations, as well as the hydrolases that remove them in the human gut, are unidentified. GT47 xyloglucan glycosyltransferase candidates were expressed in Arabidopsis and endo-xyloglucanase products from transgenic wall material were analysed by electrophoresis, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The activities of gut bacterial hydrolases BoGH43A and BoGH43B on synthetic glycosides and xyloglucan oligosaccharides were measured by colorimetry and electrophoresis. CcXBT1 is a xyloglucan ß-xylosyltransferase from coffee that can modify Arabidopsis xyloglucan and restore the growth of galactosyltransferase mutants. Related VmXST1 is a weakly active xyloglucan α-arabinofuranosyltransferase from cranberry. BoGH43A hydrolyses both α-arabinofuranosylated and ß-xylosylated oligosaccharides. CcXBT1's presence in coffee and BoGH43A's promiscuity suggest that ß-xylosylated xyloglucan is not only more widespread than thought, but might also nourish beneficial gut bacteria. The evolutionary instability of transferase specificity and lack of hydrolase specificity hint that, to enzymes, xylosides and arabinofuranosides are closely resemblant.


Asunto(s)
Arabidopsis , Humanos , Arabidopsis/metabolismo , Café/metabolismo , Xilanos/metabolismo , Oligosacáridos/metabolismo , Pared Celular/metabolismo , Azúcares/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(44): 27307-27318, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33067389

RESUMEN

We report a systematic combinatorial exploration of affinity enhancement of antibodies by insertions and deletions (InDels). Transposon-based introduction of InDels via the method TRIAD (transposition-based random insertion and deletion mutagenesis) was used to generate large libraries with random in-frame InDels across the entire single-chain variable fragment gene that were further recombined and screened by ribosome display. Knowledge of potential insertion points from TRIAD libraries formed the basis of exploration of length and sequence diversity of novel insertions by insertional-scanning mutagenesis (InScaM). An overall 256-fold affinity improvement of an anti-IL-13 antibody BAK1 as a result of InDel mutagenesis and combination with known point mutations validates this approach, and suggests that the results of this InDel mutagenesis and conventional exploration of point mutations can synergize to generate antibodies with higher affinity.


Asunto(s)
Anticuerpos/genética , Afinidad de Anticuerpos/genética , Ingeniería Genética/métodos , Afinidad de Anticuerpos/inmunología , Evolución Molecular , Humanos , Mutación INDEL/genética , Región Variable de Inmunoglobulina/genética , Mutagénesis , Mutagénesis Insercional/métodos , Eliminación de Secuencia
14.
Anal Chem ; 94(48): 16701-16710, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36417687

RESUMEN

Microfluidic water-in-oil emulsion droplets are becoming a mainstay of experimental biology, where they replace the classical test tube. In most applications, such as ultrahigh-throughput directed evolution, the droplet content is identical for all compartmentalized assay reactions. When emulsion droplets are used for kinetics or other functional assays, though, concentration dependencies of initial rates that define Michaelis-Menten parameters are required. Droplet-on-demand systems satisfy this need, but extracting large amounts of data is challenging. Here, we introduce a multiplexed droplet absorbance detector, which─coupled to semi-automated droplet generation─forms a tubing-based droplet-on-demand system able to generate and extract quantitative datasets from defined concentration gradients across multiple series of droplets for multiple time points. The emergence of a product is detected by reading the absorbance of the droplet sets at multiple, adjustable time points by reversing the flow direction after each detection, so that the droplets pass a line scan camera multiple times. Detection multiplexing allows absorbance values at 12 distinct positions to be measured, and enzyme kinetics are recorded for label-free concentration gradients that are composed of about 60 droplets each, covering as many concentrations. With a throughput of around 8640 data points per hour, a 10-fold improvement compared to the previously reported single point detection method is achieved. In a single experiment, 12 full datasets of high-resolution and high-accuracy Michaelis-Menten kinetics were determined to demonstrate the potential for enzyme characterization for glycosidase substrates covering a range in enzymatic hydrolysis of 7 orders of magnitude in kcat/KM. The straightforward setup, high throughput, excellent data quality, and wide dynamic range that allows coverage of diverse activities suggest that this system may serve as a miniaturized spectrophotometer for detailed analysis of clones emerging from large-scale combinatorial experiments.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Emulsiones , Microfluídica/métodos , Cinética , Bioensayo , Hidrólisis , Técnicas Analíticas Microfluídicas/métodos
15.
Nucleic Acids Res ; 48(11): e63, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32383757

RESUMEN

Site-saturation libraries reduce protein screening effort in directed evolution campaigns by focusing on a limited number of rationally chosen residues. However, uneven library synthesis efficiency leads to amino acid bias, remedied at high cost by expensive custom synthesis of oligonucleotides, or through use of proprietary library synthesis platforms. To address these shortcomings, we have devised a method where DNA libraries are constructed on the surface of microbeads by ligating dsDNA fragments onto growing, surface-immobilised DNA, in iterative split-and-mix cycles. This method-termed SpliMLiB for Split-and-Mix Library on Beads-was applied towards the directed evolution of an anti-IgE Affibody (ZIgE), generating a 160,000-membered, 4-site, saturation library on the surface of 8 million monoclonal beads. Deep sequencing confirmed excellent library balance (5.1% ± 0.77 per amino acid) and coverage (99.3%). As SpliMLiB beads are monoclonal, they were amenable to direct functional screening in water-in-oil emulsion droplets with cell-free expression. A FACS-based sorting of the library beads allowed recovery of hits improved in Kd over wild-type ZIgE by up to 3.5-fold, while a consensus mutant of the best hits provided a 10-fold improvement. With SpliMLiB, directed evolution workflows are accelerated by integrating high-quality DNA library generation with an ultra-high throughput protein screening platform.


Asunto(s)
ADN/química , ADN/metabolismo , Biblioteca de Genes , Ensayos Analíticos de Alto Rendimiento/métodos , Microesferas , Proteínas/análisis , Proteínas/metabolismo , Clonación Molecular , Secuencia de Consenso , ADN/genética , Ácidos Nucleicos Inmovilizados/química , Ácidos Nucleicos Inmovilizados/genética , Mutación , Fosforilación , Proteínas/química
17.
Anal Chem ; 93(4): 2166-2173, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33397084

RESUMEN

The precise determination of affinity and specificity is a crucial step in the development of new protein reagents for therapy and diagnostics. Paradoxically, the selection of protein binders, e.g., antibody fragments, from large combinatorial repertoires is a rapid process compared to the subsequent characterization of selected clones. Here we demonstrate the use of suspension bead arrays (SBA) in combination with flow cytometry to facilitate the post-selection analysis of binder affinities. The array is designed to capture the proteins of interest (POIs) covalently on the surface of superparamagnetic color-coded microbeads directly from expression cell lysate, based on SpyTag-SpyCatcher coupling by isopeptide bond formation. This concept was validated by analyzing the affinities of a typical phage display output, i.e., clones consisting of single-chain variable fragment antibodies (scFvs), as SpyCatcher fusions in 12- and 24-plex SBA formats using a standard three-laser flow cytometer. We demonstrate that the equilibrium dissociation constants (Kd) obtained from multiplexed SBA assays correlate well with experiments performed on a larger scale, while the antigen consumption was reduced >100-fold compared to the conventional 96-well plate format. Protein screening and characterization by SBAs is a rapid and reagent-saving analytical format for combinatorial protein engineering to address specificity maturation and cross-reactivity profiling of antibodies.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Inmovilizadas/química , Microesferas , Péptidos/química , Proteínas Recombinantes/química , Anticuerpos de Cadena Única/química , Unión Proteica
18.
Chembiochem ; 22(23): 3292-3299, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34643305

RESUMEN

The exploration of large DNA libraries of metagenomic or synthetic origin is greatly facilitated by ultrahigh-throughput assays that use monodisperse water-in-oil emulsion droplets as sequestered reaction compartments. Millions of samples can be generated and analysed in microfluidic devices at kHz speeds, requiring only micrograms of reagents. The scope of this powerful platform for the discovery of new sequence space is, however, hampered by the limited availability of assay substrates, restricting the functions and reaction types that can be investigated. Here, we broaden the scope of detectable biochemical transformations in droplet microfluidics by introducing the first fluorogenic assay for alcohol dehydrogenases (ADHs) in this format. We have synthesized substrates that release a pyranine fluorophore (8-hydroxy-1,3,6-pyrenetrisulfonic acid, HPTS) when enzymatic turnover occurs. Pyranine is well retained in droplets for >6 weeks (i. e. 14-times longer than fluorescein), avoiding product leakage and ensuring excellent assay sensitivity. Product concentrations as low as 100 nM were successfully detected, corresponding to less than one turnover per enzyme molecule on average. The potential of our substrate design was demonstrated by efficient recovery of a bona fide ADH with an >800-fold enrichment. The repertoire of droplet screening is enlarged by this sensitive and direct fluorogenic assay to identify dehydrogenases for biocatalytic applications.


Asunto(s)
Alcohol Deshidrogenasa/análisis , Colorantes Fluorescentes/química , Ensayos Analíticos de Alto Rendimiento , Dispositivos Laboratorio en un Chip , Alcohol Deshidrogenasa/metabolismo , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Estructura Molecular , Tamaño de la Partícula
19.
Proc Natl Acad Sci U S A ; 115(31): E7293-E7302, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30012610

RESUMEN

The recruitment and evolutionary optimization of promiscuous enzymes is key to the rapid adaptation of organisms to changing environments. Our understanding of the precise mechanisms underlying enzyme repurposing is, however, limited: What are the active-site features that enable the molecular recognition of multiple substrates with contrasting catalytic requirements? To gain insights into the molecular determinants of adaptation in promiscuous enzymes, we performed the laboratory evolution of an arylsulfatase to improve its initially weak phenylphosphonate hydrolase activity. The evolutionary trajectory led to a 100,000-fold enhancement of phenylphosphonate hydrolysis, while the native sulfate and promiscuous phosphate mono- and diester hydrolyses were only marginally affected (≤50-fold). Structural, kinetic, and in silico characterizations of the evolutionary intermediates revealed that two key mutations, T50A and M72V, locally reshaped the active site, improving access to the catalytic machinery for the phosphonate. Measured transition state (TS) charge changes along the trajectory suggest the creation of a new Michaelis complex (E•S, enzyme-substrate), with enhanced leaving group stabilization in the TS for the promiscuous phosphonate (ßleavinggroup from -1.08 to -0.42). Rather than altering the catalytic machinery, evolutionary repurposing was achieved by fine-tuning the molecular recognition of the phosphonate in the Michaelis complex, and by extension, also in the TS. This molecular scenario constitutes a mechanistic alternative to adaptation solely based on enzyme flexibility and conformational selection. Instead, rapid functional transitions between distinct chemical reactions rely on the high reactivity of permissive active-site architectures that allow multiple substrate binding modes.


Asunto(s)
Arilsulfatasas/química , Evolución Molecular Dirigida , Catálisis , Dominio Catalítico , Hidrólisis , Compuestos Organofosforados/química , Conformación Proteica
20.
Angew Chem Int Ed Engl ; 60(16): 9015-9021, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33470025

RESUMEN

NAD(H)-utiliing enzymes have been the subject of directed evolution campaigns to improve their function. To enable access to a larger swath of sequence space, we demonstrate the utility of a cell-free, ultrahigh-throughput directed evolution platform for dehydrogenases. Microbeads (1.5 million per sample) carrying both variant DNA and an immobilised analogue of NAD+ were compartmentalised in water-in-oil emulsion droplets, together with cell-free expression mixture and enzyme substrate, resulting in the recording of the phenotype on each bead. The beads' phenotype could be read out and sorted for on a flow cytometer by using a highly sensitive fluorescent protein-based sensor of the NAD+ :NADH ratio. Integration of this "NAD-display" approach with our previously described Split & Mix (SpliMLiB) method for generating large site-saturation libraries allowed straightforward screening of fully balanced site saturation libraries of formate dehydrogenase, with diversities of 2×104 . Based on modular design principles of synthetic biology NAD-display offers access to sophisticated in vitro selections, avoiding complex technology platforms.


Asunto(s)
Citometría de Flujo , Formiato Deshidrogenasas/análisis , Ensayos Analíticos de Alto Rendimiento , NAD/análisis , Formiato Deshidrogenasas/metabolismo , NAD/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA