Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Biol ; 179(1): 65-74, 2007 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-17908917

RESUMEN

Cytoplasmic RNA granules serve key functions in the control of messenger RNA (mRNA) fate in eukaryotic cells. For instance, in yeast, severe stress induces mRNA relocalization to sites of degradation or storage called processing bodies (P-bodies). In this study, we show that the translation repression associated with glucose starvation causes the key translational mediators of mRNA recognition, eIF4E, eIF4G, and Pab1p, to resediment away from ribosomal fractions. These mediators then accumulate in P-bodies and in previously unrecognized cytoplasmic bodies, which we define as EGP-bodies. Our kinetic studies highlight the fundamental difference between EGP- and P-bodies and reflect the complex dynamics surrounding reconfiguration of the mRNA pool under stress conditions. An absence of key mRNA decay factors from EGP-bodies points toward an mRNA storage function for these bodies. Overall, this study highlights new potential control points in both the regulation of mRNA fate and the global control of translation initiation.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Glucosa/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Cinética , Modelos Genéticos , Biosíntesis de Proteínas
2.
Mol Biol Cell ; 22(18): 3379-93, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21795399

RESUMEN

Cellular stress can globally inhibit translation initiation, and glucose removal from yeast causes one of the most dramatic effects in terms of rapidity and scale. Here we show that the same rapid inhibition occurs during yeast growth as glucose levels diminish. We characterize this novel regulation showing that it involves alterations within the 48S preinitiation complex. In particular, the interaction between eIF4A and eIF4G is destabilized, leading to a temporary stabilization of the eIF3-eIF4G interaction on the 48S complex. Under such conditions, specific mRNAs that are important for the adaptation to the new conditions must continue to be translated. We have determined which mRNAs remain translated early after glucose starvation. These experiments enable us to provide a physiological context for this translational regulation by ascribing defined functions that are translationally maintained or up-regulated. Overrepresented in this class of mRNA are those involved in carbohydrate metabolism, including several mRNAs from the pentose phosphate pathway. Our data support a hypothesis that a concerted preemptive activation of the pentose phosphate pathway, which targets both mRNA transcription and translation, is important for the transition from fermentative to respiratory growth in yeast.


Asunto(s)
Factor 4A Eucariótico de Iniciación/metabolismo , Glucosa/deficiencia , Complejos Multiproteicos/metabolismo , Vía de Pentosa Fosfato , Iniciación de la Cadena Peptídica Traduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulación hacia Arriba , Adaptación Fisiológica/genética , Análisis por Conglomerados , Factor 2B Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Estabilidad Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico
3.
Yeast ; 23(14-15): 1075-88, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17083129

RESUMEN

The eukaryotic translation initiation factor eIF4E is responsible for the recognition of the mRNA cap structure and, as such, plays a key role in the selection of mRNAs for translation. The interaction of eIF4E with the 'multi-adaptor' eIF4G (and thus recruitment of ribosomes to mRNA) can be regulated via competitive binding of 4E-binding proteins (4E-BPs). 4E-BPs have broad functions in cell growth, proliferation and development. We have found that disruption of the genes for either of the yeast 4E-BPs (Eap1p or Caf20p) leads to an inhibition of pseudohyphal growth in the resulting diploid yeast strain following nitrogen limitation. Specific 4E-binding domain mutations destroy the capacity of each 4E-BP gene to complement the non-pseudohyphal phenotype, suggesting that a translational function for the 4E-BPs is important for pseudohyphal growth. In addition, neither of the 4E-BP deletion strains is deficient in global or stress-regulated protein synthesis. However, our evidence reveals that the two 4E-BPs are functionally distinct with regard to pseudohyphal growth. Therefore, this work supports a model where the yeast 4E-BPs are acting on specific mRNAs to facilitate a defined proliferative response to environmental stress in yeast.


Asunto(s)
Factor 4E Eucariótico de Iniciación/genética , Hifa/fisiología , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Sitios de Unión , Proliferación Celular , Factor 4E Eucariótico de Iniciación/metabolismo , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Complejo Proteico Nuclear de Unión a la Caperuza/genética , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Caperuzas de ARN , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA