Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proteins ; 91(2): 161-170, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36065600

RESUMEN

We have determined the 1.8 Å X-ray crystal structure of nonlipidated (i.e., N-terminally truncated) nontypeable Haemophilus influenzae (NTHi; H. influenzae) protein D. Protein D exists on outer membranes of H. influenzae strains and acts as a virulence factor that helps invade human cells. Protein D is a proven successful antigen in animal models to treat obstructive pulmonary disease (COPD) and otitis media (OM), and when conjugated to polysaccharides also has been used as a carrier molecule for human vaccines, for example in GlaxoSmithKline Synflorix™. NTHi protein D shares high sequence and structural identify to the Escherichia coli (E. coli) glpQ gene product (GlpQ). E. coli GlpQ is a glycerophosphodiester phosphodiesterase (GDPD) with a known dimeric structure in the Protein Structural Database, albeit without an associated publication. We show here that both structures exhibit similar homodimer organization despite slightly different crystal lattices. Additionally, we have observed both the presence of weak dimerization and the lack of dimerization in solution during size exclusion chromatography (SEC) experiments yet have distinctly observed dimerization in native mass spectrometry analyses. Comparison of NTHi protein D and E. coli GlpQ with other homologous homodimers and monomers shows that the E. coli and NTHi homodimer interfaces are distinct. Despite this distinction, NTHi protein D and E. coli GlpQ possess a triose-phosphate isomerase (TIM) barrel domain seen in many of the other homologs. The active site of NTHi protein D is located near the center of this TIM barrel. A putative glycerol moiety was modeled in two different conformations (occupancies) in the active site of our NTHi protein D structure and we compared this to ligands modeled in homologous structures. Our structural analysis should aid in future efforts to determine structures of protein D bound to substrates, analog intermediates, and products, to fully appreciate this reaction scheme and aiding in future inhibitor design.


Asunto(s)
Proteínas Portadoras , Vacunas , Proteínas Portadoras/genética , Dimerización , Escherichia coli/genética , Haemophilus influenzae/genética , Hidrolasas
2.
Biochemistry ; 59(27): 2518-2527, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32558551

RESUMEN

Allostery pervades macromolecular function and drives cooperative binding of ligands to macromolecules. To decipher the mechanisms of cooperative ligand binding, it is necessary to define, at a microscopic level, the thermodynamic consequences of binding of each ligand to its energetically coupled site(s). However, extracting these microscopic constants is difficult for macromolecules with more than two binding sites, because the observable [e.g., nuclear magnetic resonance (NMR) chemical shift changes, fluorescence, and enthalpy] can be altered by allostery, thereby distorting its proportionality to site occupancy. Native mass spectrometry (MS) can directly quantify the populations of homo-oligomeric protein species with different numbers of bound ligands, provided the populations are proportional to ion counts and that MS-compatible electrolytes do not alter the overall thermodynamics. These measurements can help decipher allosteric mechanisms by providing unparalleled access to the statistical thermodynamic partition function. We used native MS (nMS) to study the cooperative binding of tryptophan (Trp) to Bacillus stearothermophilus trp RNA binding attenuation protein (TRAP), a ring-shaped homo-oligomeric protein complex with 11 identical binding sites. MS-compatible solutions did not significantly perturb protein structure or thermodynamics as assessed by isothermal titration calorimetry and NMR spectroscopy. Populations of Trpn-TRAP11 states were quantified as a function of Trp concentration by nMS. The population distributions could not be explained by a noncooperative binding model but were described well by a mechanistic nearest-neighbor cooperative model. Nonlinear least-squares fitting yielded microscopic thermodynamic constants that define the interactions between neighboring binding sites. This approach may be applied to quantify thermodynamic cooperativity in other ring-shaped proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Geobacillus stearothermophilus/enzimología , Espectrometría de Masas/métodos , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Termodinámica , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Triptófano/metabolismo , Regulación Alostérica , Proteínas Bacterianas/aislamiento & purificación , Sitios de Unión , Fenómenos Biofísicos , Modelos Moleculares , Proteínas de Unión al ARN/aislamiento & purificación , Relación Estructura-Actividad , Factores de Transcripción/aislamiento & purificación
3.
bioRxiv ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37425951

RESUMEN

Cellular production of tryptophan is metabolically expensive and tightly regulated. The small Bacillus subtilis zinc binding Anti-TRAP protein (AT), which is the product of the yczA/rtpA gene, is upregulated in response to accumulating levels of uncharged tRNATrp through a T-box antitermination mechanism. AT binds to the undecameric ring-shaped protein TRAP (trp RNA Binding Attenuation Protein), thereby preventing it from binding to the trp leader RNA. This reverses the inhibitory effect of TRAP on transcription and translation of the trp operon. AT principally adopts two symmetric oligomeric states, a trimer (AT3) featuring a three-helix bundle, or a dodecamer (AT12) comprising a tetrahedral assembly of trimers, whereas only the trimeric form has been shown to bind and inhibit TRAP. We demonstrate the utility of native mass spectrometry (nMS) and small-angle x-ray scattering (SAXS), together with analytical ultracentrifugation (AUC) for monitoring the pH and concentration-dependent equilibrium between the trimeric and dodecameric structural forms of AT. In addition, we report the use of solution nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of AT3, while heteronuclear 15N relaxation measurements on both oligomeric forms of AT provide insights into the dynamic properties of binding-active AT3 and binding-inactive AT12, with implications for TRAP inhibition.

4.
FEBS Open Bio ; 12(12): 2191-2202, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36263849

RESUMEN

Nontypeable Haemophilus influenzae (NTHi) has emerged as a dominant mucosal pathogen causing acute otitis media (AOM) in children, acute sinusitis in children and adults, and acute exacerbations of chronic bronchitis in adults. Consequently, there is an urgent need to develop a vaccine to protect against NTHi infection. A multi-component vaccine will be desirable to avoid emergence of strains expressing modified proteins allowing vaccine escape. Protein D (PD), outer membrane protein (OMP) 26, and Protein 6 (P6) are leading protein vaccine candidates against NTHi. In pre-clinical research using mouse models, we found that recombinantly expressed PD, OMP26, and P6 induce robust antibody responses after vaccination as individual vaccines, but when PD and OMP26 were combined into a single vaccine formulation, PD antibody levels were significantly lower. We postulated that PD and OMP26 physiochemically interacted to mask PD antigenic epitopes resulting in the observed effect on antibody response. However, column chromatography and mass spectrometry analysis did not support our hypothesis. We postulated that the effect might be in vivo through the mechanism of protein vaccine immunologic antigenic competition. We found when PD and OMP26 were injected into the same leg or separate legs of mice, so that antigens were immunologically processed at the same or different regional lymph nodes, respectively, antibody levels to PD were significantly lower with same leg vaccination. Different leg vaccination produced PD antibody levels quantitatively similar to vaccination with PD alone. We conclude that mixing PD and OMP26 into a single vaccine formulation requires further formulation studies.


Asunto(s)
Vacunas contra Haemophilus , Ratones , Animales , Proteínas de la Membrana Bacteriana Externa , Anticuerpos Antibacterianos , Inmunoglobulina G , Haemophilus influenzae
5.
FEBS Open Bio ; 7(11): 1778-1783, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29123985

RESUMEN

Nontypeable Haemophilus influenzae (NTHi) are Gram-negative pathogens that contribute to a variety of diseases, including acute otitis media and chronic obstructive pulmonary disease. As NTHi have an absolute requirement for heme during aerobic growth, these bacteria have to scavenge heme from their human hosts. These heme sources can range from free heme to heme bound to proteins, such as hemoglobin. To test the impact of heme structural factors on heme acquisition by NTHi, we prepared a series of heme sources that systematically vary in heme exposure and covalent binding of heme to peptide/protein and tested the ability of NTHi to use these sources to support growth. Results from this study suggest that NTHi can utilize protein-associated heme only if it is noncovalently attached to the protein.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA