Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Phylogenet Evol ; 196: 108086, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38677354

RESUMEN

Dinoflagellates are diverse and ecologically important protists characterized by many morphological and molecular traits that set them apart from other eukaryotes. These features include, but are not limited to, massive genomes organized using bacterially-derived histone-like proteins (HLPs) and dinoflagellate viral nucleoproteins (DVNP) rather than histones, and a complex history of photobiology with many independent losses of photosynthesis, numerous cases of serial secondary and tertiary plastid gains, and the presence of horizontally acquired bacterial rhodopsins and type II RuBisCo. Elucidating how this all evolved depends on knowing the phylogenetic relationships between dinoflagellate lineages. Half of these species are heterotrophic, but existing molecular data is strongly biased toward the photosynthetic dinoflagellates due to their amenability to cultivation and prevalence in culture collections. These biases make it impossible to interpret the evolution of photosynthesis, but may also affect phylogenetic inferences that impact our understanding of character evolution. Here, we address this problem by isolating individual cells from the Salish Sea and using single cell, culture-free transcriptomics to expand molecular data for dinoflagellates to include 27 more heterotrophic taxa, resulting in a roughly balanced representation. Using these data, we performed a comprehensive search for proteins involved in chromatin packaging, plastid function, and photoactivity across all dinoflagellates. These searches reveal that 1) photosynthesis was lost at least 21 times, 2) two known types of HLP were horizontally acquired around the same time rather than sequentially as previously thought; 3) multiple rhodopsins are present across the dinoflagellates, acquired multiple times from different donors; 4) kleptoplastic species have nucleus-encoded genes for proteins targeted to their temporary plastids and they are derived from multiple lineages, and 5) warnowiids are the only heterotrophs that retain a whole photosystem, although some photosynthesis-related electron transport genes are widely retained in heterotrophs, likely as part of the iron-sulfur cluster pathway that persists in non-photosynthetic plastids.


Asunto(s)
Dinoflagelados , Fotosíntesis , Filogenia , Dinoflagelados/genética , Dinoflagelados/clasificación , Fotosíntesis/genética , Procesos Heterotróficos/genética , Evolución Biológica , Evolución Molecular , Plastidios/genética
2.
J Invertebr Pathol ; 186: 107387, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-32330478

RESUMEN

With rapid increases in the global shrimp aquaculture sector, a focus on animal health during production becomes ever more important. Animal productivity is intimately linked to health, and the gut microbiome is becoming increasingly recognised as an important driver of cultivation success. The microbes that colonise the gut, commonly referred to as the gut microbiota or the gut microbiome, interact with their host and contribute to a number of key host processes, including digestion and immunity. Gut microbiome manipulation therefore represents an attractive proposition for aquaculture and has been suggested as a possible alternative to the use of broad-spectrum antibiotics in the management of disease, which is a major limitation of growth in this sector. Microbiota supplementation has also demonstrated positive effects on growth and survival of several different commercial species, including shrimp. Development of appropriate gut supplements, however, requires prior knowledge of the host microbiome. Little is known about the gut microbiota of the aquatic invertebrates, but penaeid shrimp are perhaps more studied than most. Here, we review current knowledge of information reported on the shrimp gut microbiota, highlighting the most frequently observed taxa and emphasizing the dominance of Proteobacteria within this community. We discuss involvement of the microbiome in the regulation of shrimp health and disease and describe how the gut microbiota changes with the introduction of several economically important shrimp pathogens. Finally, we explore evidence of microbiome supplementation and consider its role in the future of penaeid shrimp production.


Asunto(s)
Alimentación Animal/análisis , Suplementos Dietéticos , Microbioma Gastrointestinal , Penaeidae/microbiología , Proteobacteria/química , Animales , Acuicultura , Dieta
3.
J Invertebr Pathol ; 154: 109-116, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29555081

RESUMEN

A parasite exhibiting Oomycete-like morphology and pathogenesis was isolated from discoloured eggs of the European lobster (Homarus gammarus) and later found in gill tissues of adults. Group-specific Oomycete primers were designed to amplify the 18S ribosomal small subunit (SSU), which initially identified the organism as the same as the 'Haliphthoros' sp. NJM 0034 strain (AB178865.1) previously isolated from abalone (imported from South Australia to Japan). However, in accordance with other published SSU-based phylogenies, the NJM 0034 isolate did not group with other known Haliphthoros species in our Maximum Likelihood and Bayesian phylogenies. Instead, the strain formed an orphan lineage, diverging before the separation of the Saprolegniales and Pythiales. Based upon 28S large subunit (LSU) phylogeny, our own isolate and the previously unidentified 0034 strain are both identical to the abalone pathogen Halioticida noduliformans. The genus shares morphological similarities with Haliphthoros and Halocrusticida and forms a clade with these in LSU phylogenies. Here, we confirm the first recorded occurrence of H. noduliformans in European lobsters and associate its presence with pathology of the egg mass, likely leading to reduced fecundity.


Asunto(s)
Nephropidae/parasitología , Oomicetos/aislamiento & purificación , Animales , Teorema de Bayes , Branquias/parasitología , Funciones de Verosimilitud , Oomicetos/clasificación , Óvulo/parasitología , Filogenia
4.
Curr Biol ; 34(8): 1810-1816.e4, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38608678

RESUMEN

Coral reefs are a biodiversity hotspot,1,2 and the association between coral and intracellular dinoflagellates is a model for endosymbiosis.3,4 Recently, corals and related anthozoans have also been found to harbor another kind of endosymbiont, apicomplexans called corallicolids.5 Apicomplexans are a diverse lineage of obligate intracellular parasites6 that include human pathogens such as the malaria parasite, Plasmodium.7 Global environmental sequencing shows corallicolids are tightly associated with tropical and subtropical reef environments,5,8,9 where they infect diverse corals across a range of depths in many reef systems, and correlate with host mortality during bleaching events.10 All of this points to corallicolids being ecologically significant to coral reefs, but it is also possible they are even more widely distributed because most environmental sampling is biased against parasites that maintain a tight association with their hosts throughout their life cycle. We tested the global distribution of corallicolids using a more direct approach, by specifically targeting potential anthozoan host animals from cold/temperate marine waters outside the coral reef context. We found that corallicolids are in fact common in such hosts, in some cases at high frequency, and that they infect the same tissue as parasites from topical coral reefs. Parasite phylogeny suggests corallicolids move between hosts and habitats relatively frequently, but that biogeography is more conserved. Overall, these results greatly expand the range of corallicolids beyond coral reefs, suggesting they are globally distributed parasites of marine anthozoans, which also illustrates significant blind spots that result from strategies commonly used to sample microbial biodiversity.


Asunto(s)
Antozoos , Arrecifes de Coral , Antozoos/parasitología , Animales , Apicomplexa/fisiología , Apicomplexa/genética , Apicomplexa/clasificación , Simbiosis , Frío , Dinoflagelados/fisiología , Dinoflagelados/genética , Interacciones Huésped-Parásitos
5.
Sci Rep ; 13(1): 18612, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903823

RESUMEN

The phylum Phoronida comprises filter-feeding invertebrates that live in a protective tube sometimes reinforced with particulate material from the surrounding environments. Animals with these characteristics make promising candidate hosts for symbiotic bacteria, given the constant interactions with various bacterial colonizers, yet phoronids are one of the very few animal phyla with no available microbiome data whatsoever. Here, by sequencing the V4 region of the 16S rRNA gene, we compare bacterial microbiomes in whole phoronids, including both tube and living tissues, with those associated exclusively to the isolated tube and/or the naked animal inside. We also compare these communities with those from the surrounding water. Phoronid microbiomes from specimens belonging to the same colony but collected a month apart were significantly different, and bacterial taxa previously reported in association with invertebrates and sediment were found to drive this difference. The microbiomes associated with the tubes are very similar in composition to those isolated from whole animals. However, just over half of bacteria found in whole specimens are also found both in tubes and naked specimens. In conclusion, phoronids harbour bacterial microbiomes that differ from those in the surrounding water, but the composition of those microbiomes is not stable and appears to change in the same colony over a relatively short time frame. Considering individual spatial/anatomical compartments, the phoronid tube contributes most to the whole-animal microbiome.


Asunto(s)
Invertebrados , Microbiota , Animales , ARN Ribosómico 16S/genética , Bacterias , Agua
6.
Curr Biol ; 33(19): 4252-4260.e3, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37703877

RESUMEN

Warnowiid dinoflagellates contain a highly complex camera-eye-like structure called the ocelloid that is composed of different organelles resembling parts of metazoan eyes, including a modified plastid that serves as the retinal body.1 The overall structure of the ocelloid has been investigated by microscopy; because warnowiids are not in culture and are rare in nature, we know little about their function.1,2 Here, we generate single-cell transcriptomes from 18 warnowiid cells collected directly from the marine environment representing all 4 known genera and 1 previously undescribed genus, as well as 8 cells from a related lineage, the polykrikoids. Phylogenomic analyses show that photosynthesis was independently lost twice in warnowiids. Interestingly, the non-photosynthetic taxa still express a variety of photosynthesis-related proteins. Nematodinium and Warnowia (known or suspected to be photosynthetic1,3) unsurprisingly express a full complement of photosynthetic pathway components. However, non-photosynthetic genera with ocelloids were also found to express light-harvesting complexes, photosystem I, photosynthetic electron transport (PET), cytochrome b6f, and, in Erythropsidinium, plastid ATPase, representing all major complexes except photosystem II and the Calvin cycle. This suggests that the non-photosynthetic retinal body has retained a reduced but still substantial photosynthetic apparatus that perhaps functions using cyclic electron flow (CEF). This may support ATP synthesis in a reduced capacity, but it is also possible that the photosystem has been co-opted to function as a light-driven proton pump at the heart of the sensory mechanism within the complex architecture of ocelloids.

7.
ACS Biomater Sci Eng ; 9(9): 5136-5150, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-36198112

RESUMEN

Synbiotics are a new class of live therapeutics employing engineered genetic circuits. The rapid adoption of genetic editing tools has catalyzed the expansion of possible synbiotics, exceeding traditional testing paradigms in terms of both throughput and model complexity. Herein, we present a simplistic gut-chip model using common Caco2 and HT-29 cell lines to establish a dynamic human screening platform for a cortisol sensing tryptamine producing synbiotic for cognitive performance sustainment. The synbiotic, SYN, was engineered from the common probiotic E. coli Nissle 1917 strain. It had the ability to sense cortisol at physiological concentrations, resulting in the activation of a genetic circuit that produces tryptophan decarboxylase and converts bioavailable tryptophan to tryptamine. SYN was successfully cultivated within the gut-chip showing log-phase growth comparable to the wild-type strain. Tryptophan metabolism occurred quickly in the gut compartment when exposed to 5 µM cortisol, resulting in the complete conversion of bioavailable tryptophan into tryptamine. The flux of tryptophan and tryptamine from the gut to the vascular compartment of the chip was delayed by 12 h, as indicated by the detectable tryptamine in the vascular compartment. The gut-chip provided a stable environment to characterize the sensitivity of the cortisol sensor and dynamic range by altering cortisol and tryptophan dosimetry. Collectively, the human gut-chip provided human relevant apparent permeability to assess tryptophan and tryptamine metabolism, production, and transport, enabled host analyses of cellular viability and pro-inflammatory cytokine secretion, and succeeded in providing an efficacy test of a novel synbiotic. Organ-on-a-chip technology holds promise in aiding traditional therapeutic pipelines to more rapidly down select high potential compounds that reduce the failure rate and accelerate the opportunity for clinical intervention.


Asunto(s)
Escherichia coli , Triptófano , Humanos , Células CACO-2 , Escherichia coli/genética , Hidrocortisona , Bacterias/metabolismo , Triptaminas/metabolismo , Dispositivos Laboratorio en un Chip
8.
Nat Commun ; 14(1): 7049, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923716

RESUMEN

Microbial eukaryotes are important components of marine ecosystems, and the Marine Alveolates (MALVs) are consistently both abundant and diverse in global environmental sequencing surveys. MALVs are dinoflagellates that are thought to be parasites of other protists and animals, but the lack of data beyond ribosomal RNA gene sequences from all but a few described species means much of their biology and evolution remain unknown. Using single-cell transcriptomes from several MALVs and their free-living relatives, we show that MALVs evolved independently from two distinct, free-living ancestors and that their parasitism evolved in parallel. Phylogenomics shows one subgroup (MALV-II and -IV, or Syndiniales) is related to a novel lineage of free-living, eukaryovorous predators, the eleftherids, while the other (MALV-I, or Ichthyodinida) is related to the free-living predator Oxyrrhis and retains proteins targeted to a non-photosynthetic plastid. Reconstructing the evolution of photosynthesis, plastids, and parasitism in early-diverging dinoflagellates shows a number of parallels with the evolution of their apicomplexan sisters. In both groups, similar forms of parasitism evolved multiple times and photosynthesis was lost many times. By contrast, complete loss of the plastid organelle is infrequent and, when this does happen, leaves no residual genes.


Asunto(s)
Dinoflagelados , Parásitos , Animales , Parásitos/genética , Ecosistema , Filogenia , Plastidios/genética , Fotosíntesis/genética , Dinoflagelados/genética
9.
Microbiome ; 10(1): 161, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180959

RESUMEN

BACKGROUND: Microbial symbioses in marine invertebrates are commonplace. However, characterizations of invertebrate microbiomes are vastly outnumbered by those of vertebrates. Protists and fungi run the gamut of symbiosis, yet eukaryotic microbiome sequencing is rarely undertaken, with much of the focus on bacteria. To explore the importance of microscopic marine invertebrates as potential symbiont reservoirs, we used a phylogenetic-focused approach to analyze the host-associated eukaryotic microbiomes of 220 animal specimens spanning nine different animal phyla. RESULTS: Our data expanded the traditional host range of several microbial taxa and identified numerous undescribed lineages. A lack of comparable reference sequences resulted in several cryptic clades within the Apicomplexa and Ciliophora and emphasized the potential for microbial invertebrates to harbor novel protistan and fungal diversity. CONCLUSIONS: Microscopic marine invertebrates, spanning a wide range of animal phyla, host various protist and fungal sequences and may therefore serve as a useful resource in the detection and characterization of undescribed symbioses. Video Abstract.


Asunto(s)
Organismos Acuáticos , Eucariontes , Animales , Organismos Acuáticos/microbiología , Eucariontes/genética , Hongos/genética , Invertebrados/microbiología , Filogenia , Simbiosis
10.
Nat Commun ; 12(1): 2805, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990606

RESUMEN

Engineered bacteria (synthetic biotics) represent a new class of therapeutics that leverage the tools of synthetic biology. Translational testing strategies are required to predict synthetic biotic function in the human body. Gut-on-a-chip microfluidics technology presents an opportunity to characterize strain function within a simulated human gastrointestinal tract. Here, we apply a human gut-chip model and a synthetic biotic designed for the treatment of phenylketonuria to demonstrate dose-dependent production of a strain-specific biomarker, to describe human tissue responses to the engineered strain, and to show reduced blood phenylalanine accumulation after administration of the engineered strain. Lastly, we show how in vitro gut-chip models can be used to construct mechanistic models of strain activity and recapitulate the behavior of the engineered strain in a non-human primate model. These data demonstrate that gut-chip models, together with mechanistic models, provide a framework to predict the function of candidate strains in vivo.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Terapia Biológica/métodos , Microbioma Gastrointestinal , Dispositivos Laboratorio en un Chip , Modelos Biológicos , Fenilcetonurias/terapia , Animales , Células CACO-2 , Simulación por Computador , Escherichia coli/metabolismo , Ingeniería Genética , Células HT29 , Humanos , Técnicas In Vitro , Microfluídica , Fenilalanina/metabolismo , Fenilcetonurias/metabolismo , Fenilcetonurias/microbiología , Primates , Biología Sintética
11.
ISME J ; 14(2): 531-543, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31676854

RESUMEN

Microbial communities within the gut can markedly impact host health and fitness. To what extent environmental influences affect the differential distribution of these microbial populations may therefore significantly impact the successful farming of the host. Using a sea-based container culture (SBCC) system for the on-growing of European lobster (Homarus gammarus), we tracked the bacterial gut microbiota over a 1-year period. We compared these communities with lobsters of the same cohort, retained in a land-based culture (LBC) system to assess the effects of the culture environment on gut bacterial assemblage and describe the phylogenetic structure of the microbiota to compare deterministic and stochastic assembly across both environments. Bacterial gut communities from SBCCs were generally more phylogenetically clustered, and therefore deterministically assembled, compared to those reared in land-based systems. Lobsters in SBCCs displayed significantly more species-rich and species-diverse gut microbiota compared to those retained in LBC. A reduction in the bacterial diversity of the gut was also associated with higher infection prevalence of the enteric viral pathogen Homarus gammarus nudivirus (HgNV). SBCCs may therefore benefit the overall health of the host by promoting the assembly of a more diverse gut bacterial community and reducing the susceptibility to disease.


Asunto(s)
Microbioma Gastrointestinal/genética , Nephropidae/microbiología , Nephropidae/virología , Nudiviridae/aislamiento & purificación , Animales , Bacterias/clasificación , Susceptibilidad a Enfermedades/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Interacciones Microbianas , Filogenia , Alimentos Marinos/microbiología , Alimentos Marinos/virología , Virosis
12.
Nutrients ; 11(5)2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31085979

RESUMEN

Limited evidence suggests that the consumption of polyphenols may improve glycaemic control and insulin sensitivity. The gut microbiome produces phenolic metabolites and increases their bioavailability. A handful of studies have suggested that polyphenol consumption alters gut microbiome composition. There are no data available investigating such effects in polyphenol-rich Montmorency cherry (MC) supplementation. A total of 28 participants (aged 40-60 years) were randomized to receive daily MC or glucose and energy-matched placebo supplementation for 4 wk. Faecal and blood samples were obtained at baseline and at 4 wk. There was no clear effect of supplementation on glucose handling (Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and Gutt indices), although the Matsuda index decreased significantly in the MC group post-supplementation, reflecting an increase in serum insulin concentration. Contrastingly, placebo, but not MC supplementation induced a 6% increase in the Oral Glucose Insulin Sensitivity (OGIS) estimate of glucose clearance. Serum IL-6 and C reactive protein were unaltered by either supplement. The faecal bacterial microbiome was sequenced; species richness and diversity were unchanged by MC or placebo and no significant correlation existed between changes in Bacteroides and Faecalibacterium abundance and any index of insulin sensitivity. Therefore, 4 weeks of MC supplementation did not alter the gut microbiome, glycaemic control or systemic concentrations of IL-6 and CRP in a middle-aged population.


Asunto(s)
Glucemia/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología , Prunus avium/química , Adulto , Biomarcadores , Proteína C-Reactiva/genética , Proteína C-Reactiva/metabolismo , Suplementos Dietéticos , Método Doble Ciego , Heces/microbiología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/administración & dosificación , Glucosa/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Persona de Mediana Edad , Extractos Vegetales/química
13.
Sci Rep ; 9(1): 10086, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31300678

RESUMEN

Viral diseases of crustaceans are increasingly recognised as challenges to shellfish farms and fisheries. Here we describe the first naturally-occurring virus reported in any clawed lobster species. Hypertrophied nuclei with emarginated chromatin, characteristic histopathological lesions of DNA virus infection, were observed within the hepatopancreatic epithelial cells of juvenile European lobsters (Homarus gammarus). Transmission electron microscopy revealed infection with a bacilliform virus containing a rod shaped nucleocapsid enveloped in an elliptical membrane. Assembly of PCR-free shotgun metagenomic sequencing produced a circular genome of 107,063 bp containing 97 open reading frames, the majority of which share sequence similarity with a virus infecting the black tiger shrimp: Penaeus monodon nudivirus (PmNV). Multiple phylogenetic analyses confirm the new virus to be a novel member of the Nudiviridae: Homarus gammarus nudivirus (HgNV). Evidence of occlusion body formation, characteristic of PmNV and its closest relatives, was not observed, questioning the horizontal transmission strategy of HgNV outside of the host. We discuss the potential impacts of HgNV on juvenile lobster growth and mortality and present HgNV-specific primers to serve as a diagnostic tool for monitoring the virus in wild and farmed lobster stocks.


Asunto(s)
Enfermedades de los Peces/virología , Nephropidae/virología , Nudiviridae/clasificación , Nudiviridae/genética , Animales , Genoma Viral/genética , Hepatopáncreas/virología , Microscopía Electrónica de Transmisión , Nudiviridae/aislamiento & purificación , Penaeidae/virología , Filogenia , Mariscos/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA