Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Neurosci ; 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35803734

RESUMEN

DYRK1A triplication in Down's Syndrome (DS) and its overexpression in Alzheimer's Disease (AD) suggest a role for increased DYR1A activity in the abnormal metabolism of APP. Transport defects are early phenotypes in the progression of AD, which lead to APP processing impairments. However, whether DYRK1A regulates the intracellular transport and delivery of APP in human neurons remains unknown. From a proteomic dataset of human cerebral organoids treated with harmine, a DYRK1A inhibitor, we found expression changes in protein clusters associated with the control of microtubule-based transport and in close interaction with the APP vesicle. Live-imaging of APP axonal transport in human-derived neurons treated with harmine or overexpressing a dominant negative DYRK1A revealed a reduction in APP vesicle density and enhanced the stochastic behavior of retrograde vesicle transport. Moreover, harmine increased the fraction of slow segmental velocities and changed speed transitions supporting a DYRK1A-mediated effect in the exchange of active motor configuration. Contrarily, the overexpression of DYRK1A in human polarized neurons increased the axonal density of APP vesicles and enhanced the processivity of retrograde APP. In addition, increased DYRK1A activity induced faster retrograde segmental velocities together with significant changes in slow to fast anterograde and retrograde speeds transitions suggesting the facilitation of the active motor configuration. Our results highlight DYRK1A as a modulator of the axonal transport machinery driving APP intracellular distribution in neurons, and stress DYRK1A inhibition as a putative therapeutic intervention to restore APP axonal transport in DS and AD.Significance StatementAxonal transport defects are early events in the progression of neurodegenerative diseases such as Alzheimer's Disease (AD). However, the molecular mechanisms underlying transport defects remain elusive. DYRK1A kinase is triplicated in Down's Syndrome and overexpressed in AD, suggesting that DYRK1A dysfunction affects molecular pathways leading to early-onset neurodegeneration. Here, we show by live imaging of human-derived neurons that DYRK1A activity differentially regulates the intracellular trafficking of the amyloid precursor protein (APP). Further, single particle analysis revealed DYRK1A as a modulator of axonal transport and the configuration of active motors within the APP vesicle. Our work highlights DYRK1A as a regulator of APP axonal transport and metabolism; supporting DYRK1A inhibition as a therapeutic strategy to restore intracellular dynamics in AD.

2.
Biochem Biophys Res Commun ; 618: 24-29, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35714567

RESUMEN

Thioredoxin (Trx) family proteins are key players in redox signaling. Here, we have analyzed glutaredoxin (Grx) 1 and Grx2 in age-related macular degeneration (AMD) and in retinal pigment epithelial (ARPE-19) cells. We hypothesized that these redoxins regulate cellular functions and signaling circuits such as cell proliferation, Wnt signaling and VEGF release that have been correlated to the pathophysiology of AMD. ARPE-19 cells were transfected with specific siRNAs to silence the expression of Grx1 and Grx2 and were analyzed for proliferation/viability, migration capacity, ß-catenin activation, and VEGF release. An active site-mutated C-X-X-S Grx1 was utilized to trap interacting proteins present in ARPE-19 cell extracts. In both, AMD retinas and in ARPE-19 cells incubated under hypoxia/reoxygenation conditions, Grx1 showed an increased nuclear localization. Grx1-silenced ARPE-19 cells showed a significantly reduced proliferation and migration rate. Our trapping approach showed that Grx1 interacts with ß-catenin in a dithiol-disulfide exchange reaction. Knock-down of Grx1 led to a reduction in both total and active ß-catenin levels. These findings add redox control to the regulatory mechanisms of ß-catenin signaling in the retinal pigment epithelium and open the door to novel therapeutic approaches in AMD that is currently treated with VEGF-inhibitors.


Asunto(s)
Glutarredoxinas , Degeneración Macular , Epitelio Pigmentado de la Retina , beta Catenina , Proliferación Celular/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Degeneración Macular/genética , Degeneración Macular/metabolismo , Degeneración Macular/patología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Pigmentos Retinianos/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , beta Catenina/metabolismo
3.
Biochim Biophys Acta ; 1850(6): 1274-85, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25735211

RESUMEN

BACKGROUND: Thioredoxin (Trx) family proteins are crucial mediators of cell functions via regulation of the thiol redox state of various key proteins and the levels of the intracellular second messenger hydrogen peroxide. Their expression, localization and functions are altered in various pathologies. Here, we have analyzed the impact of Trx family proteins in neuronal development and recovery, following hypoxia/ischemia and reperfusion. METHODS: We have analyzed the regulation and potential functions of Trx family proteins during hypoxia/ischemia and reoxygenation of the developing brain in both an animal and a cellular model of perinatal asphyxia. We have analyzed the distribution of 14 Trx family and related proteins in the cerebellum, striatum, and hippocampus, three areas of the rat brain that are especially susceptible to hypoxia. Using SH-SY5Y cells subjected to hypoxia and reoxygenation, we have analyzed the functions of some redoxins suggested by the animal experiment. RESULTS AND CONCLUSIONS: We have described/discovered a complex, cell-type and tissue-specific expression pattern following the hypoxia/ischemia and reoxygenation. Particularly, Grx2 and Trx1 showed distinct changes during tissue recovery following hypoxia/ischemia and reoxygenation. Silencing of these proteins in SH-SY5Y cells subjected to hypoxia-reoxygenation confirmed that these proteins are required to maintain the normal neuronal phenotype. GENERAL SIGNIFICANCE: These findings demonstrate the significance of redox signaling in cellular pathways. Grx2 and Trx1 contribute significantly to neuronal integrity and could be clinically relevant in neuronal damage following perinatal asphyxia and other neuronal disorders.


Asunto(s)
Asfixia Neonatal/enzimología , Encéfalo/enzimología , Glutarredoxinas/metabolismo , Hipoxia-Isquemia Encefálica/enzimología , Neuronas/enzimología , Tiorredoxinas/metabolismo , Animales , Asfixia Neonatal/patología , Encéfalo/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glutarredoxinas/genética , Humanos , Hipoxia-Isquemia Encefálica/patología , Masculino , Neuronas/patología , Oxidación-Reducción , Oxígeno/metabolismo , Fenotipo , Interferencia de ARN , Ratas Sprague-Dawley , Transducción de Señal , Tiorredoxinas/genética , Factores de Tiempo , Transfección
4.
J Vis Exp ; (204)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38436323

RESUMEN

Engrafting organoids into vascularized tissues in model animals, such as the immunodeficient mouse or chick embryo chorioallantoic membrane (CAM), has proven efficient for neovascularization modeling. The CAM is a richly vascularized extraembryonic membrane, which shows limited immunoreactivity, thus becoming an excellent hosting model for human origin cell transplants. This paper describes the strategy to engraft human brain organoids differentiated at multiple maturation stages into the CAM. The cellular composition of brain organoids changes with time, reflecting the milestones of human brain development. We grafted brain organoids at relevant maturation stages: neuroepithelial expansion (18 DIV), early neurogenesis (60 DIV), and early gliogenesis (180 DIV) into the CAM of embryonic day (E)7 chicken embryos. Engrafted brain organoids were harvested 5 days later and their histological features were analyzed. No histological signs of neovascularization in the grafted organoids or abnormal blood vessels adjacent to the graftings were detected. Moreover, remarkable changes were observed in the cellular composition of the grafted organoids, namely, an increase in the number of glial fibrillary acidic protein-positive-reactive astrocytes. However, the cytoarchitectural changes were dependent on the organoid maturation stage. Altogether, these results suggest that brain organoids can grow in the CAM, and they show differences in the cytoarchitecture depending on their maturation stage at grafting.


Asunto(s)
Membrana Corioalantoides , Fenómenos Fisiológicos del Sistema Nervioso , Humanos , Embrión de Pollo , Animales , Ratones , Membrana Corioalantoides/cirugía , Organoides , Neurogénesis , Encéfalo/cirugía , Neovascularización Patológica
5.
Synapse ; 67(9): 553-67, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23447367

RESUMEN

Perinatal asphyxia (PA) increases the likelihood of suffering from dopamine-related disorders, such as ADHD and schizophrenia. Since dopaminergic transmission plays a major role in cocaine sensitization, the purpose of this study was to determine whether PA could be associated with altered behavioral sensitization to cocaine. To this end, adult rats born vaginally (CTL), by caesarean section (C+), or by C+ with 15 min (PA15, moderate PA) or 19 min (PA19, severe PA) of global anoxia were repeatedly administered with cocaine (i.p., 15 mg/kg) and then challenged with cocaine (i.p., 15 mg/kg) after a 5-day withdrawal period. In addition, c-Fos, FosB/ΔFosB, DAT, and TH expression were assessed in dorsal (CPu) and ventral (NAcc) striatum. Results indicated that PA15 rats exhibited an increased locomotor sensitization to cocaine, while PA19 rats displayed an abnormal acquisition of locomotor sensitization and did not express a sensitized response to cocaine. c-Fos expression in NAcc, but not in CPu, was associated with these alterations in cocaine sensitization. FosB/ΔFosB expression was increased in all groups and regions after repeated cocaine administration, although it reached lower expression levels in PA19 rats. In CTL, C+, and PA15, but not in PA19 rats, the expression of TH in NAcc was reduced in groups repeatedly treated with cocaine, independently of the challenge test. Furthermore, this reduction was more pronounced in PA15 rats. DAT expression remained unaltered in all groups and regions studied. These results suggest that moderate PA may increase the vulnerability to drug abuse and in particular to cocaine addiction.


Asunto(s)
Asfixia Neonatal/complicaciones , Sensibilización del Sistema Nervioso Central , Trastornos Relacionados con Cocaína/etiología , Cocaína/farmacología , Animales , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/fisiopatología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Locomoción , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Putamen/efectos de los fármacos , Putamen/metabolismo , Ratas , Ratas Sprague-Dawley , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
6.
Free Radic Biol Med ; 208: 394-401, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37657763

RESUMEN

Reactive Oxygen Species (ROS) and mitochondrial dysfunction are implicated in the pathogenesis of Alzheimer's disease (AD), a common neurodegenerative disorder characterized by abnormal metabolism of the amyloid precursor protein (APP) in brain tissue. However, the exact mechanism by which abnormal APP leads to oxidative distress remains unclear. Damage to mitochondrial membrane and inhibition of mitochondrial respiration are thought to contribute to the progression of the disease. However, the lack of suitable human models that replicate pathological features, together with impaired cellular pathways, constitutes a major challenge in AD studies. In this work, we induced pluripotency in patient-derived skin fibroblasts carrying the Swedish mutation in App (APPswe), to generate human brain organoids that model AD, and studied redox regulation and mitochondrial homeostasis. We found time-dependent increases in AD-related pathological hallmarks in APPswe brain organoids, including elevated Aß levels, increased extracellular amyloid deposits, and enhanced tau phosphorylation. Interestingly, using live-imaging spinning-disk confocal microscopy, we found an increase in mitochondrial fragmentation and a significant loss of mitochondrial membrane potential in APPswe brain organoids when subjected to oxidative conditions. Moreover, ratiometric dyes in a live imaging setting revealed a selective increase in mitochondrial superoxide anion and hydrogen peroxide levels in APPswe brain organoids that were coupled to impairments in cytosolic and mitochondrial redoxin protein expression. Our results suggest a selective increase in mitochondrial vulnerability to oxidative conditions in APPswe organoids, indicating that the abnormal metabolism of APP leads to specific changes in mitochondrial homeostasis that enhance the vulnerability to oxidation in AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Encéfalo/metabolismo , Organoides/metabolismo , Organoides/patología , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos
7.
Methods Mol Biol ; 2561: 135-158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36399268

RESUMEN

Alzheimer's disease (AD) is the primary cause of dementia, to date. The urgent need to understand the biological and biochemical processes related to this condition, as well as the demand for reliable in vitro models for drug screening, has led to the development of novel techniques, among which stem cell methods are of utmost relevance for AD research, particularly the development of human brain organoids. Brain organoids are three-dimensional cellular aggregates derived from induced pluripotent stem cells (iPSCs) that recreate different neural cell interactions and tissue characteristics in culture. Here, we describe the protocol for the generation of brain organoids derived from AD patients and for the analysis of AD-derived pathology. AD organoids can recapitulate beta-amyloid and tau pathological features, making them a promising model for studying the molecular mechanisms underlying disease and for in vitro drug testing.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Organoides , Enfermedad de Alzheimer/patología , Encéfalo/patología , Péptidos beta-Amiloides/metabolismo
8.
Biochim Biophys Acta ; 1810(1): 93-110, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20620191

RESUMEN

BACKGROUND: The oxidoreductases of the thioredoxin (Trx) family of proteins play a major role in the cellular response to oxidative stress. Redox imbalance is a major feature of brain damage. For instance, neuronal damage and glial reaction induced by a hypoxic-ischemic episode is highly related to glutamate excitotoxicity, oxidative stress and mitochondrial dysfunction. Most animal models of hypoxia-ischemia in the central nervous system (CNS) use rats to study the mechanisms involved in neuronal cell death, however, no comprehensive study on the localization of the redox proteins in the rat CNS was available. METHODS: The aim of this work was to study the distribution of the following proteins of the thioredoxin and glutathione/glutaredoxin (Grx) systems in the rat CNS by immunohistochemistry: Trx1, Trx2, TrxR1, TrxR2, Txnip, Grx1, Grx2, Grx3, Grx5, and γ-GCS, peroxiredoxin 1 (Prx1), Prx2, Prx3, Prx4, Prx5, and Prx6. We have focused on areas most sensitive to a hypoxia-ischemic insult: Cerebellum, striatum, hippocampus, spinal cord, substantia nigra, cortex and retina. RESULTS AND CONCLUSIONS: Previous studies implied that these redox proteins may be distributed in most cell types and regions of the CNS. Here, we have observed several remarkable differences in both abundance and regional distribution that point to a complex interplay and crosstalk between the proteins of this family. GENERAL SIGNIFICANCE: We think that these data might be helpful to reveal new insights into the role of thiol redox pathways in the pathogenesis of hypoxia-ischemia insults and other disorders of the CNS. This article is part of a Special Issue entitled Human and Murine Redox Protein Atlases.


Asunto(s)
Sistema Nervioso Central/metabolismo , Glutarredoxinas/metabolismo , Tiorredoxinas/metabolismo , Animales , Atlas como Asunto , Sistema Nervioso Central/anatomía & histología , Humanos , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Inmunohistoquímica , Masculino , Oxidación-Reducción , Ratas
9.
Antioxidants (Basel) ; 11(6)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35740003

RESUMEN

Nucleoredoxin (Nrx) belongs to the Thioredoxin protein family and functions in redox-mediated signal transduction. It contains the dithiol active site motif Cys-Pro-Pro-Cys and interacts and regulates different proteins in distinct cellular pathways. Nrx was shown to be catalytically active in the insulin assay and recent findings indicate that Nrx functions, in fact, as oxidase. Here, we have analyzed Nrx in the mammalian retina exposed to (perinatal) hypoxia-ischemia/reoxygenation, combining ex vivo and in vitro models. Our data show that Nrx regulates cell differentiation, which is important to (i) increase the number of glial cells and (ii) replenish neurons that are lost following the hypoxic insult. Nrx is essential to maintain cell morphology. These regulatory changes are related to VEGF but do not seem to be linked to the Wnt/ß-catenin pathway, which is not affected by Nrx knock-down. In conclusion, our results strongly suggest that hypoxia-ischemia could lead to alterations in the organization of the retina, related to changes in RPE cell differentiation. Nrx may play an essential role in the maintenance of the RPE cell differentiation state via the regulation of VEGF release.

10.
Cannabis Cannabinoid Res ; 3(1): 171-178, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30255158

RESUMEN

Introduction: Perinatal hypoxic-ischemic (HI) encephalopathy is defined as a neurological syndrome where the newborn suffers from acute ischemia and hypoxia during the perinatal period. New therapies are needed. The acylethanolamides, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), possess neuroprotective properties, and they could be effective against perinatal HI. These lipid mediators act through peroxisome proliferator-activated receptors subtype α (PPARα), or transient receptor potential vanilloid (TRPV), such as TRPV subtype 1 and 4. Materials and Methods: The objectives of this study were to discern: (1) the neuroprotective role of OEA and PEA in parietotemporal cortical neurons of newborn rats and mice subjected to hypoxia, and (2) the role of the receptors, PPARα, TRPV1, and TRPV4, in neuroprotective effects. Cell culture of cortical neurons and the lactate dehydrogenase assay was carried out. The role of receptors was discerned by using selective antagonist and agonist ligands, as well as knockout (KO) PPARα mice. Results: The findings indicate that OEA and PEA exert neuroprotective effects on cultured cortical neurons subjected to a hypoxic episode. These protective effects are not mediated by the receptors, PPARα, TRPV1, or TRPV4, because neither PPARα KO mice nor receptor ligands significantly modify OEA and PEA-induced effects. Blocking TRPV4 with RN1734 is neuroprotective per se, and cotreatment with OEA and PEA is able to enhance neuroprotective effects of the acylethanolamides. Since stimulating TRPV4 was devoid of effects on OEA and PEA-induced protective effects, effects of RN1734 cotreatment seem to be a consequence of additive actions. Conclusion: The lipid mediators, OEA and PEA, exert neuroprotective effects on cultured cortical neurons subjected to hypoxia. Coadministration of OEA or PEA, and the TRPV4 antagonist RN1734 is able to enhance neuroprotective effects. These in vitro results could be of utility for developing new therapeutic tools against perinatal HI.

11.
Psychopharmacology (Berl) ; 235(10): 2929-2945, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30058012

RESUMEN

RATIONAL: Neonatal anoxia-ischemia (AI) particularly affects the central nervous system. Despite the many treatments that have been tested, none of them has proven to be completely successful. Palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are acylethanolamides that do not bind to CB1 or CB2 receptors and thus they do not present cannabinoid activity. These molecules are agonist compounds of peroxisome proliferator-activator receptor alpha (PPARα), which modulates the expression of different genes that are related to glucose and lipid metabolism, inflammation, differentiation and proliferation. OBJECTIVE: In the present study, we analyzed the effects that the administration of PEA or OEA, after a neonatal AI event, has over different areas of the hippocampus. METHODS: To this end, 7-day-old rats were subjected to AI and then treated with vehicle, OEA (2 or 10 mg/kg) or PEA (2 or 10 mg/kg). At 30 days of age, animals were subjected to behavioral tests followed by immunohistochemical studies. RESULTS: Results showed that neonatal AI was associated with decreased locomotion, as well as recognition and spatial memory impairments. Furthermore, these deficits were accompanied with enhanced neuroinflammation and astrogliosis, as well as a decreased PPARα expression. PEA treatment was able to prevent neuroinflammation, reduce astrogliosis and preserve cognitive functions. CONCLUSIONS: These results indicate that the acylethanolamide PEA may play an important role in the mechanisms underlying neonatal AI, and it could be a good candidate for further studies regarding neonatal AI treatments.


Asunto(s)
Endocannabinoides/farmacología , Etanolaminas/farmacología , Hipocampo/efectos de los fármacos , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Ácidos Oléicos/farmacología , Ácidos Palmíticos/farmacología , Amidas , Animales , Modelos Animales de Enfermedad , Femenino , Glucosa/farmacología , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/fisiopatología , Metabolismo de los Lípidos , Locomoción/efectos de los fármacos , PPAR alfa/metabolismo , Ratas , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos , Memoria Espacial/efectos de los fármacos
12.
Neurosci Lett ; 653: 269-275, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28579484

RESUMEN

Endocannabinoids (eCBs) and acylethanolamides (AEs) have lately received more attention due to their neuroprotective functions in neurological disorders. Here we analyze the alterations induced by perinatal asphyxia (PA) in the main metabolic enzymes and receptors of the eCBs/AEs in the dorsal striatum of rats. To induce PA, we used a model developed by Bjelke et al. (1991). Immunohistochemical techniques were carried out to determine the expression of neuronal and glial markers (NeuN and GFAP), eCBs/AEs synthesis and degradation enzymes (DAGLα, NAPE-PLD and FAAH) and their receptors (CB1 and PPARα). We found a decrease in NAPE-PLD and PPARα expression. Since NAPE-PLD and PPARα take part in the production and reception of biochemical actions of AEs, such as oleoylethanolamide, these results may suggest that PA plays a key role in the regulation of this system. These data agree with previous results obtained in the hippocampus and encourage us to develop further studies using AEs as potential neuroprotective compounds.


Asunto(s)
Asfixia Neonatal/metabolismo , Cuerpo Estriado/metabolismo , Endocannabinoides/metabolismo , Lipoproteína Lipasa/metabolismo , PPAR alfa/metabolismo , Fosfolipasa D/metabolismo , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Ratas , Ratas Sprague-Dawley
13.
Oxid Med Cell Longev ; 2017: 4162465, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28706574

RESUMEN

The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury.


Asunto(s)
Asfixia/complicaciones , Glutarredoxinas/uso terapéutico , Hipoxia-Isquemia Encefálica/metabolismo , Neuronas/patología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Glutarredoxinas/administración & dosificación , Glutarredoxinas/farmacología , Hipoxia-Isquemia Encefálica/patología , Masculino , Ratas
14.
Front Aging Neurosci ; 8: 116, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27445788

RESUMEN

Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day.

15.
Front Neuroanat ; 9: 141, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26578900

RESUMEN

Perinatal asphyxia (PA) is an obstetric complication that strongly affects the CNS. The endocannabinoid system (ECS) is a lipid transmitter system involved in several physiological processes including synaptic plasticity, neurogenesis, memory, and mood. Endocannabinoids, and other acylethanolamides (AEs) without endocannabinoid activity, have recently received growing attention due to their potential neuroprotective functions in neurological disorders, including cerebral ischemia. In the present study, we aimed to analyze the changes produced by PA in the major metabolic enzymes and receptors of the ECS/AEs in the hippocampus using a rodent model of PA. To induce PA, we removed uterine horns from ready-to-deliver rats and immersed them into a water bath during 19 min. Animals delivered spontaneously or by cesarean section were employed as controls. At 1 month of age, cognitive functions were assessed and immunohistochemical procedures were carried out to determine the expression of NeuN and glial fibrillary acidic protein, enzymes responsible for synthesis (DAGLα and NAPE-PLD) and degradation (FAAH) of ECS/AEs and their receptors (CB1 and PPARα) in the hippocampus. Postweaned asphyctic rats showed impaired recognition and spatial reference memory that were accompanied by hippocampal astrogliosis and changes in the expression of enzymes and receptors. The most remarkable findings in asphyctic rats were a decrease in the expression of NAPE-PLD and PPARα in both hippocampal areas CA1 and CA3. In addition, postweaned cesarean delivery rats showed an increase in the immunolabeling for FAAH in the hippocampal CA3 area. Since, NAPE-PLD and PPARα are proteins that participate in the biochemical process of AEs, specially the neuroprotective oleoylethanolamide, these results suggest that PA dysregulates this system. These data encourage conducting future studies using AEs as potential neuroprotective compounds in animal models of PA.

16.
Front Behav Neurosci ; 8: 406, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25601829

RESUMEN

Continuous environmental stimulation induced by exposure to enriched environment (EE) has yielded cognitive benefits in different models of brain injury. Perinatal asphyxia results from a lack of oxygen supply to the fetus and is associated with long-lasting neurological deficits. However, the effects of EE in middle-aged rats suffering perinatal asphyxia are unknown. Therefore, the aim of the present study was to assess whether life-long exposure to EE could counteract the cognitive and behavioral alterations in middle-aged asphyctic rats. Experimental groups consisted of rats born vaginally (CTL), by cesarean section (C+), or by C+ following 19 min of asphyxia at birth (PA). At weaning, rats were assigned to standard (SE) or enriched environment (EE) for 18 months. During the last month of housing, animals were submitted to a behavioral test battery including Elevated Plus Maze, Open Field, Novel Object Recognition and Morris water maze (MWM). Results showed that middle-aged asphyctic rats, reared in SE, exhibited an impaired performance in the spatial reference and working memory versions of the MWM. EE was able to counteract these cognitive impairments. Moreover, EE improved the spatial learning performance of middle-aged CTL and C+ rats. On the other hand, all groups reared in SE did not differ in locomotor activity and anxiety levels, while EE reduced locomotion and anxiety, regardless of birth condition. Recognition memory was altered neither by birth condition nor by housing environment. These results support the importance of environmental stimulation across the lifespan to prevent cognitive deficits induced by perinatal asphyxia.

17.
Brain Res ; 1563: 81-90, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24685534

RESUMEN

Cerebral hypoxia-ischemia damages synaptic proteins, resulting in cytoskeletal alterations, protein aggregation and neuronal death. In the previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia that leads to ubi-protein accumulation. Recently, we also showed that, changes in F-actin organization could be related to early alterations induced by hypoxia in the Central Nervous System. However, little is known about effective treatment to diminish the damage. The main aim of this work is to study the effects of birth hypothermia on the actin cytoskeleton of neostriatal post-synaptic densities (PSD) in 60 days olds rats by immunohistochemistry, photooxidation and western blot. We used 2 different protocols of hypothermia: (a) intrahypoxic hypothermia at 15°C and (b) post-hypoxia hypothermia at 32°C. Consistent with previous data at 30 days, staining with phalloidin-Alexa(488) followed by confocal microscopy analysis showed an increase of F-actin fluorescent staining in the neostriatum of hypoxic animals. Correlative photooxidation electron microscopy confirmed these observations showing an increment in the number of mushroom-shaped F-actin staining spines in neostriatal excitatory synapses in rats subjected to hypoxia. In addition, western blot revealed ß-actin increase in PSDs in hypoxic animals. The optic relative density measurement showed a significant difference between controls and hypoxic animals. When hypoxia was induced under hypothermic conditions, the changes observed in actin cytoskeleton were blocked. Post-hypoxic hypothermia showed similar answer but actin cytoskeleton modifications were not totally reverted as we observed at 15°C. These data suggest that the decrease of the body temperature decreases the actin modifications in dendritic spines preventing the neuronal death.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Asfixia Neonatal/metabolismo , Espinas Dendríticas/metabolismo , Hipotermia Inducida , Neostriado/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Neuronas GABAérgicas/patología , Densidad Postsináptica/metabolismo , Ratas , Ratas Sprague-Dawley
18.
Hum Exp Toxicol ; 30(9): 1382-91, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21081703

RESUMEN

Paullinia cupana Mart. var. Sorbilis, commonly known as Guaraná, is a Brazilian plant frequently cited for its antioxidant properties and different pharmacological activities on the central nervous system. The potential beneficial uses of Guaraná in neurodegenerative disorders, such as in Parkinson's disease (PD), the pathogenesis of which is associated with mitochondrial dysfunction and oxidative stress, has not yet been assessed. Therefore, the main aim of the present study was to evaluate if an extract of commercial powdered seeds of Guaraná could protect human dopaminergic neuroblastoma SH-SY5Y cell line against rotenone-induced cytotoxicity. Two concentration of Guaraná dimethylsulfoxide extract (0.312 and 0.625 mg/mL) were added to SH-SY5Y cells treated with 300 nM rotenone for 48 h, and the cytoprotective effects were assessed by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, measuring lactate dehydrogenase (LDH) levels, and analyzing nuclear integrity with Hoechst33258 stain. Results showed that the addition of Guaraná extract significantly increased the cell viability of SH-SY5Y cells treated with rotenone, in a dose-dependent manner. On the other hand, LDH levels were significantly reduced by addition of 0.312 mg/mL of Guaraná, but unexpectedly, no changes were observed with the higher concentration. Moreover, chromatin condensation and nuclear fragmentation were significantly reduced by addition of any of both concentrations of the extract. The results obtained in this work could provide relevant information about the mechanisms underlying the degeneration of dopaminergic neurons in PD and precede in vivo experiments. Further studies are needed to investigate which active constituent is responsible for the cytoprotective effect produced by Paullinia cupana.


Asunto(s)
Antioxidantes/farmacología , Insecticidas/toxicidad , Neuronas/efectos de los fármacos , Paullinia/química , Extractos Vegetales/farmacología , Rotenona/toxicidad , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Interpretación Estadística de Datos , Relación Dosis-Respuesta a Droga , Humanos , Neuroblastoma/patología , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Semillas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA